电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104501. doi: 10.13208/j.electrochem.210450
所属专题: “下一代二次电池”专题文章; “电子电镀和腐蚀”专题文章
杨森1, 王文昌1,*(), 张然1, 秦水平2, 吴敏娴1, 光崎尚利2, 陈智栋1,*()
收稿日期:
2022-01-14
修回日期:
2022-02-21
出版日期:
2022-06-28
发布日期:
2022-04-24
通讯作者:
王文昌,陈智栋
E-mail:king717@cczu.edu.cn;zdchen@cczu.edu.cn
基金资助:
Sen Yang1, Wen-Chang Wang1,*(), Ran Zhang1, Shui-Ping Qin2, Min-Xian Wu1, Naotoshi Mitsuzaki2, Zhi-Dong Chen1,*()
Received:
2022-01-14
Revised:
2022-02-21
Published:
2022-06-28
Online:
2022-04-24
Contact:
Wen-Chang Wang, Zhi-Dong Chen
E-mail:king717@cczu.edu.cn;zdchen@cczu.edu.cn
摘要:
电解铜箔因其工艺简单、经济价值高,已广泛应用于印制线路板和锂离子电池领域。研究表明在电解制箔过程中,加入微量添加剂即可大幅度提高电解铜箔性能。因此, 在基础电解液(312.5 g·L-1 CuSO4·5H2O,100 g·L-1 H2SO4, 50 mg·L-1 Cl-)基础上,加入添加剂考察了电解液的电化学行为以及对铜箔表面形貌、结构以及性能的影响。实验选取了醇硫基丙烷磺酸钠(HP)、 水解蛋白(HVP)和N,N-二甲基硫代甲酰胺丙烷磺酸钠(DPS)作为组合添加剂, 利用扫描电镜(SEM)、 X射线洐射(XRD)以及电化学分析等方法,重点考察了组合添加中HP对铜箔表面形貌和物理性能的影响。研究结果表明,在组合添加剂体系中HP具有较强的去极化作用,可以加速铜核的生长,且具有增强铜(200)晶面的择优生长取向。HP与DPS、 HVP的协同作用可以进一步减小电解铜箔的晶粒尺寸,降低表面粗糙,提高铜箔力学性能和耐腐蚀性能。所制备的电解铜箔均匀致密,平均晶粒尺寸为29.2 nm、 平均粗糙度为 1.12 μm、 平均抗拉强度为399.5 MPa且耐蚀性能优越, 是锂离子电池负极集流体的理想材料, 具有较高的商业价值。
杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501.
Sen Yang, Wen-Chang Wang, Ran Zhang, Shui-Ping Qin, Min-Xian Wu, Naotoshi Mitsuzaki, Zhi-Dong Chen. Effect of Sodium Alcohol Thiyl Propane Sulfonate on Electrolysis of High Performance Copper Foil for Lithium Ion Batteries[J]. Journal of Electrochemistry, 2022, 28(6): 2104501.
表2
在组合添加剂体系中添加不同浓度HP所得镀层在3.5wt% NaCl腐蚀液中的电化学腐蚀参数
HP/(mg·L-1) | Ecorr/V | Icorr/(μA·cm-2) | βa /mV | βc /mV | Rp/(kΩ·cm2) |
---|---|---|---|---|---|
0 | -0.2732 | 3.55 | 66.512 | 51.148 | 3.464 × 103 |
3 | -0.2695 | 3.63 | 78.197 | 78.197 | 4.639 × 103 |
5 | -0.2235 | 1.80 | 108.536 | 61.214 | 9.187 × 103 |
8 | -0.1925 | 0.96 | 54.057 | 51.3 | 1.181 × 104 |
10 | -0.2919 | 12.61 | 230.413 | 57.134 | 1.627 × 103 |
15 | -0.3177 | 18.65 | 147.628 | 122.758 | 1.562 × 103 |
[1] |
Wang C B, Yin L W, Xiang D, Qi Y X. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2012, 4(3): 1636-1642.
doi: 10.1021/am2017909 URL |
[2] |
Varghese S P, Babu B, Prasannachandran R, Antony R, Shaijumon M M. Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries[J]. J. Alloy. Compd., 2019, 780: 588-596.
doi: 10.1016/j.jallcom.2018.11.394 |
[3] |
An C S, Zhang B, Tang L B, Xiao B, He Z J, Zheng J C. Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries[J]. Ceram. Int., 2019, 45(10): 13144-13149.
doi: 10.1016/j.ceramint.2019.03.249 URL |
[4] |
Zuo T T, Wu X W, Yang C P, Yin Y X, Ye H, Li N W, Guo Y G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Adv. Mater., 2017, 29(29): 1700389.
doi: 10.1002/adma.201700389 URL |
[5] |
An G H, Cha S N, Ahn H J. Surface functionalization of the terraced surface-based current collector for a supercapacitor with an improved energy storage performance[J]. Appl. Surf. Sci., 2019, 478: 435-440.
doi: 10.1016/j.apsusc.2019.01.280 URL |
[6] |
Shin D Y, Park D H, Ahn H J. Interface modification of an Al current collector for ultrafast lithium-ion batteries[J]. Appl. Surf. Sci., 2019, 475: 519-523.
doi: 10.1016/j.apsusc.2019.01.016 URL |
[7] |
Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F, Yu S H. Free-standing copper nanowire network current collector for improving lithium anode performance[J]. Nano Lett., 2016, 16(7): 4431-4437.
doi: 10.1021/acs.nanolett.6b01581 URL |
[8] |
Park H, Um J H, Choi H, Yoon W S, Sung Y E, Choe H. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries[J]. Appl. Surf. Sci., 2017, 399: 132-138.
doi: 10.1016/j.apsusc.2016.12.043 URL |
[9] |
Cui Y, Fu Y Z. Enhanced cyclability of Li/polysulfide batteries by a polymer-modified carbon paper current collector[J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20369-20376.
doi: 10.1021/acsami.5b06214 URL |
[10] |
Jin L(金磊), Yang J Q(杨家强), Yang F Z(杨防祖), Zhan D P(詹东平), Tian Z Q(田中群), Zhou S M(周绍民). Research progresses of copper interconnection in chips[J]. J. Electrochem.(电化学), 2020, 26(4): 521-530.
doi: 10.13208/j.electrochem.200212 |
[11] | Yin L(殷列), Wang Z L(王增林). Behavior of copper electrodeposition in copper electroplating solution with different PEG molecular weight[J]. J. Electrochem.(电化学), 2008, 14(4): 431-435. |
[12] |
Meudre C, Ricq L, Hihn J Y, Moutarlier V, Monnin A, Heintz O. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte[J]. Surf. Coat. Technol., 2014, 252: 93-101.
doi: 10.1016/j.surfcoat.2014.04.050 URL |
[13] |
Dutra A J B, O'Keefe T J. Copper nucleation on titanium for thin film applications[J]. J. Appl. Electrochem., 1999, 29(10): 1217-1227.
doi: 10.1023/A:1003537318303 URL |
[14] | Lee Y K, O’Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(4): 37-41. |
[15] | Zhong Q(钟琴). Effect of additives MPS, PEG, Cl- on electrodeposition of copper[D]. Chongqing: Chongqing University, 2010. |
[16] | Wang Y(王义). Study on the properties and mechanism of copper microvia filling additive[D]. Jiangxi: Jiangxi University of Science and Technology, 2018. |
[17] |
Dow W P, Li C C, Lin M W, Su G W, Huang C C. Copper fill of microvia using a thiol-modified Cu seed layer and various levelers[J]. J. Electrochem. Soc., 2009, 156(8): D314-D320.
doi: 10.1149/1.3147273 URL |
[18] |
Tan M, Guymon C, Wheeler D R, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): D78-D81.
doi: 10.1149/1.2401057 URL |
[19] |
Zhang Q B, Hua Y X, Wang Y T, Lu H J, Zhang X Y. Effects of ionic liquid additive [BMIM] HSO4 on copper electro-deposition from acidic sulfate electrolyte[J]. Hydrometallurgy, 2009, 98(3-4): 291-297.
doi: 10.1016/j.hydromet.2009.05.017 URL |
[20] |
Wang X M, Wang K, Xu J, Li J, Lv J E, Zhao M, Wang L M. Quinacridone skeleton as a promising efficient leveler for smooth and conformal copper electrodeposition[J]. Dyes Pigment., 2020, 181: 108594.
doi: 10.1016/j.dyepig.2020.108594 URL |
[21] |
Wang Z Q, Gong Y L, Jing C, Huang H J, Li H R, Zhang S T, Gao F. Synthesis of dibenzotriazole derivatives bearing alkylene linkers as corrosion inhibitors for copper in sodium chloride solution: A new thought for the design of organic inhibitors[J]. Corrosion Sci., 2016, 113: 64-77.
doi: 10.1016/j.corsci.2016.10.005 URL |
[22] |
Li C C, Guo X Y, Shen S, Song P, Xu T, Wen Y, Yang H F. Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3wt% NaCl solution[J]. Corrosion Sci., 2014, 83: 147-154.
doi: 10.1016/j.corsci.2014.02.001 URL |
[23] |
Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
doi: 10.1039/C7RA06857C URL |
[24] |
Varvara S, Muresan L, Popescu I C, Maurin G. Comparative study of copper electrodeposition from sulphate acidic electrolytes in the presence of IT-85 and of its components[J]. J. Appl. Electrochem., 2005, 35(1): 69-76.
doi: 10.1007/s10800-004-2398-1 URL |
[25] |
Liu Y, Li S Y, Zhang J J, Liu J A, Han Z W, Ren L Q. Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate[J]. Corrosion Sci., 2015, 94: 190-196.
doi: 10.1016/j.corsci.2015.02.009 URL |
[26] |
Hernandez-Viezcas J A, Castillo-Michel H, Andrews J C, Cotte M, Rico C, Peralta-Videa J R, Ge Y, Priester J H, Holden P A, Gardea-Torresdey J L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max)[J]. ACS Nano, 2013, 7(2): 1415-1423.
doi: 10.1021/nn305196q pmid: 23320560 |
[27] |
Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel[J]. Corrosion Sci., 2004, 46(12): 3019-3029.
doi: 10.1016/j.corsci.2004.04.007 URL |
[28] |
Pang N, Chen L. Effect of substrate orientation on critical thickness of Cu thin films[J]. Electron. Mater. Lett., 2011, 7(4): 359-363.
doi: 10.1007/s13391-011-0170-3 URL |
[29] |
Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper[J]. Science., 2009, 323(5914): 607-610.
doi: 10.1126/science.1167641 pmid: 19179523 |
[1] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[2] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[3] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[4] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[5] | 丁伟杰, 杨春晖, 冯钟涛, 陆仕荣, 程旭. 钯催化电化学烯丙位4-吡啶化反应中的配体作用研究[J]. 电化学(中英文), 2024, 30(5): 2313003-. |
[6] | 李鹏飞, 寇广生, 亓丽萍, 仇友爱. 电化学脱卤氘化研究进展[J]. 电化学(中英文), 2024, 30(5): 2313005-. |
[7] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[8] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[9] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[10] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[11] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[12] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[13] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[14] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[15] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||