电化学(中英文) ›› 2022, Vol. 28 ›› Issue (2): 2108421. doi: 10.13208/j.electrochem.210842
所属专题: “下一代二次电池”专题文章; “表界面”专题文章
收稿日期:
2021-08-21
修回日期:
2021-09-08
出版日期:
2022-02-28
发布日期:
2021-09-17
通讯作者:
胡炳文
E-mail:bwhu@phy.ecnu.edu.cn
Bing-Wen Hu*(), Chao Li, Fu-Shan Geng, Ming Shen
Received:
2021-08-21
Revised:
2021-09-08
Published:
2022-02-28
Online:
2021-09-17
Contact:
Bing-Wen Hu
E-mail:bwhu@phy.ecnu.edu.cn
摘要:
金属离子电池改变了我们的日常生活。金属离子电池里的电极材料研究是提高电池性能的关键。因此,深刻理解电极材料的结构-性能关系,有助于提高材料的能量密度和功率密度。磁共振,包括核磁共振(NMR)和电子顺磁共振(EPR),在过去的三十年中不断得到改进,并逐渐成为研究电极材料结构性能关系的重要技术之一。本文总结了我们课题组在几种有趣的电极材料上的磁共振研究进展,阐释了NMR和EPR在电极材料研究中的重要作用。本文将有助于把握磁共振技术对电池研究的重要价值,促进磁共振技术的进一步发展。
胡炳文, 李超, 耿福山, 沈明. 金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)[J]. 电化学(中英文), 2022, 28(2): 2108421.
Bing-Wen Hu, Chao Li, Fu-Shan Geng, Ming Shen. Magnetic Resonance in Metal-Ion Batteries: From NMR (Nuclear Magnetic Resonance) to EPR (Electron Paramagnetic Resonance)[J]. Journal of Electrochemistry, 2022, 28(2): 2108421.
Figure 2.
In-situ EPR spectra of the NaCrO2/Na cell cycled at 10 mA·g-1 between (A) 2.2 ~ 3.6 V and (C) 2.2 ~ 4.5 V. The intensive Na signal in the range of 331 ~ 335 mT is truncated for clarity. (B, D) Corresponding voltage profiles (top) and EPR intensities (bottom) as a function of time. EPR intensities are calculated using half of the peak-to-peak intensity. (Reproduced from Ref.[21] with permission from American Chemical Society) (color on line)
Figure 3.
In-situ EPR images of the in-situ cell charged to 4.15 V on (A) the ZY plane and (B) the XY plane. Color bars on the right side show the normalized intensity of spin concentrations. (C) Digital photos of the cell used in EPR imaging. The sizes of the cathode and the separator are marked in blue and red, respectively. (D) Scheme for the orientation of the cell in the image coordinates. (Reproduced from Ref.[21] with permission from American Chemical Society) (color on line)
Figure 5.
(A) X-band EPR spectra for lithiation/delithiation of the r-CoHNta electrode materials cycled to different states-of-charge recorded at 2 K; (B) The corresponding electrochemical profile cycled at a current rate of 100 mA·g-1. (Reproduced from Ref.[24] with permission from Elsevier publisher) (color on line)
Figure 6.
(A) 23Na and (B) 31P MAS ssNMR spectra of NVOPF, NV3.8OPF, and NV3.6OPF. Spinning sidebands are marked with asterisks in (A) and (B). (C) Continuous-wave X-band EPR spectra recorded at 2 K of NVOPF, NV3.8OPF, and NV3.6OPF. (D) An enlarged EPR spectrum of NV3.8OPF. (Reproduced with permission from ref.[28], Copyright 2018, The Royal Society of Chemistry) (color on line)
Figure 7.
(A) 23Na MAS ssNMR spectra of the NV3.8POF electrodes under various SOC (states-of-charge) values during charge process; (B) Parallel-mode EPR spectra of cycled NV3.8POF under representative SOC. (Reprinted with permission from ref.[29], Copyright 2018, American Chemical Society) (color on line)
Figure 8.
Isotropic slices of 7Li pj-MATPASS NMR spectra for (A, C) pristine NLMO, and NLMTO-0.1, and (B, D) fully discharged NLMO and NLMTO-0.1 electrodes. The resonances within the blue-marked region correspond to the Li sites in the Na layer, while the resonances within the yellow-marked region correspond to the Li sites within the TMO2 layer. (Reproduced from Ref.[32] with permission from American Chemical Society) (color on line)
Figure 9.
(A) Fine scanning vertical-mode EPR spectra of cycled NLMO under the representative SoC; The O2n- EPR signals possess various hyperfine patterns. (B) Fine scanning vertical-mode EPR spectra of cycled NLMTO-0.1. (Reproduced from Ref.[32] with permission from American Chemical Society) (color on line)
Figure 10.
Ex-situ perpendicular-mode CW-EPR spectra of LTMO during the processes of (A) Mn oxidation, (B) O oxidation, and (C) reduction. These EPR measurements were performed at 1.8 K. Signal intensities are normalized based on the mass of each material scraped from the electrodes. The sharp signals centered at ~ 345 mT (g ~ 2.0) stem from the delocalized electrons in the conductive carbon black, which can be regarded as an external reference although it may cover up similar signals. (Reproduced from Ref.[34] with permission from The Royal Society of Chemistry) (color on line)
Table 1
Summary of important magnetic resonance techniques and their applications
Technique | Application |
---|---|
MQMAS (multiple-quantum magic angle spinning) | Obtain high-resolution 2D NMR spectra of half-integer quadrupolar nuclei, e.g., 23Na(Na3V2(PO4)2F3-2yO2y), 17O. |
pjMATPASS (projected magic-angle-turning phase-adjusted- sideband-separation) | Obtain high-resolution NMR spectra with large chemical- shift-anisotropy broadening due to hyperfine interactions, e.g., 7Li(Na0.72Li0.24Mn0.76O2), 31P, 19F(Na3V2(PO4)2F3-2yO2y). |
WURST-CPMG(wideband uniform rate smooth truncation Carr-Purcell Meiboom-Gil) | Obtain static broad NMR spectra, e.g., 14N, 95Mo (MoS2). |
2D homonuclear correlation and exchange (2D EXSY) | Study dynamic or chemical exchange processes, e.g., 7Li and 23Na. |
2D homonuclear correlation based on dipole coupling (i.e. RFDR) | Detect neighboring atoms in space to reveal the spatial proximity, e.g., 1H, 7Li, and 31P. |
Perpendicular mode EPR | Detect the transitions between eigenstates for systems with half-integer spin, e.g., V4+. |
Parallel mode EPR | Detect the transitions between eigenstates for systems with integer spin, e.g., V3+. |
[1] | Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries[J]. Nat. Rev. Mater., 2018,3(4):18013. |
[2] | Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chem. Soc. Rev., 2017,46(12):3529-3614. |
[3] | Fang C, Huang Y H, Zhang W X, Han J T, Deng Z, Cao Y L, Yang H X. Routes to high energy cathodes of sodium-ion batteries[J]. Adv. Energy Mater., 2016,6(5):1501727. |
[4] | Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016,1(4):16013. |
[5] | Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014,114(23):11636-11682. |
[6] | Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nat. Mater., 2017,16(1):45-56. |
[7] | Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat. Chem., 2015,7(1):19-29. |
[8] | Goodenough J B. Evolution of strategies for modern rech-argeable batteries[J]. Acc. Chem. Res., 2013,46(5):1053-1061. |
[9] | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010,22(3):587-603. |
[10] | Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ. Sci., 2011,4(9):3243-3262. |
[11] | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657. |
[12] | Liu D Q, Shadike Z, Lin R Q, Qian K, Li H, Li K K, Wang S W, Yu Q P, Liu M, Ganapathy S, Qin X Y, Yang Q H, Wagemaker M, Kang F Y, Yang X Q, Li B H. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Adv. Mater., 2019,31(28):1806620. |
[13] | Pecher O, Carretero-González J, Griffith K J, Grey C P. Materials’ methods: NMR in battery research[J]. Chem. Mater., 2017,29(1):213-242. |
[14] | Nguyen H, Clément R J. Rechargeable batteries from the perspective of the electron spin[J]. ACS Energy Lett., 2020,5(12):3848-3859. |
[15] | Ilott A J, Mohammadi M, Schauerman C M, Ganter M J, Jerschow A. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging[J]. Nat. Commun., 2018,9(1):1776. |
[16] | Sathiya M, Leriche J B, Salager E, Gourier D, Tarascon J M, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries[J]. Nat. Commun., 2015,6(1):6276. |
[17] | Geng F S, Shen M, Hu B, Liu Y F, Zeng L C, Hu B W. Monitoring the evolution of local oxygen environments during LiCoO2 charging via ex situ17O NMR[J]. Chem. Commun., 2019,55(52):7550-7553. |
[18] | Freytag A I, Pauric A D, Krachkovskiy S A, Goward G R. In situ magic-angle spinning7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design[J]. J. Am. Chem. Soc., 2019,141(35):13758-13761. |
[19] | Shimoda K, Murakami M, Takamatsu D, Arai H, Uchimoto Y, Ogumi Z. In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode[J]. Electro-chim. Acta, 2013,108:343-349. |
[20] | Hu B, Lou X B, Li C, Geng F S, Zhao C, Wang J Y, Shen M, Hu B W. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode[J]. J. Power Sources, 2019,438:226954. |
[21] | Geng F S, Yang Q, Li C, Hu B, Zhao C, Shen M, Hu B W. Operando EPR and EPR imaging study on a NaCrO2 cathode: Electronic property and structural degradation with Cr dissolution[J]. J. Phys. Chem. Lett., 2021,12(2):781-786. |
[22] | Liao Y X, Li C, Lou X B, Hu X S, Ning Y Q, Yuan F Y, Chen B, Shen M, Hu B W. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability[J]. Electrochim. Acta, 2018,271:608-616. |
[23] | Yin S C, Grondey H, Strobel P, Huang H, Nazar L F. Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries[J]. J. Am. Chem. Soc., 2003,125(2):326-327. |
[24] | Li C, Lou X B, Shen M, Hu X S, Yan W S, Zou Y, Tong W M, Hu B W. High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins[J]. Energy Storage Mater., 2017,7:195-202. |
[25] | Li C, Yang Q, Shen M, Ma J Y, Hu B W. The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy[J]. Energy Storage Mater., 2018,14:82-89. |
[26] | Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities[J]. ACS Appl. Mater. Interfaces, 2017,9(35):29829-19838. |
[27] | Li C, Lou X B, Yang Q, Zou Y M, Hu B W. Remarkable improvement in the lithium storage property of CO2(OH)2 BDC MOF by covalent stitching to graphene and the redox chemistry boosted by delocalized electron spins[J]. Chem. Eng. J., 2017,326:1000-1008. |
[28] | Li C, Shen M, Hu B, Lou X B, Zhang X, Tong W, Hu B W. High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry[J]. J. Mater. Chem. A, 2018,6(18):8340-8348. |
[29] | Li C, Shen M, Lou X B, Hu B W. Unraveling the redox couples of V-III/V-IV mixed-valent Na3V2(PO4)2O1.6F1.4 cathode by parallel-mode EPR and in situ/ex situ NMR[J]. J. Phys. Chem. C, 2018,122(48):27224-27232. |
[30] | Park Y U, Seo D H, Kim B, Hong K P, Kim H, Lee S, Shakoor R A, Miyasaka K, Tarascon J M, Kang K. Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries[J]. Sci. Rep., 2012,2:704. |
[31] | Qiu Q, Li C, Liu H, Liao Y X, Zhao C, Geng F S, Shen M, Li J X, Tong W, Hu B W. NMR evidence for the multielectron reaction mechanism of Na3V2(PO4)3 cathode and the impact of polyanion site substitution[J]. J. Phys. Chem. C, 2021,125(28):15200-15209. |
[32] | Li C, Zhao C, Hu B, Tong W, Shen M, Hu B W. Unraveling the critical role of Ti substitution in P2-NaxLiyMn1-yO2 cathodes for highly reversible oxygen redox chemistry[J]. Chem. Mater., 2020,32(3):1054-1063. |
[33] | Zhao C, Li C, Yang Q, Qiu Q, Tong W, Zheng S, Ma J Y, Shen M, Hu B W. Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR[J]. Energy Storage Mater., 2021,39:60-69. |
[34] | Geng F S, Hu B, Li C, Zhao C, Lafon O, Trébosc J, Am-oureux J P, Shen M, Hu B W. Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state NMR and EPR[J]. J. Mater. Chem. A, 2020,8(32):16515-16526. |
[35] | Li C, Shen M, Hu B W. Solid-state NMR and EPR methods for metal ion battery research[J]. Acta Phys.-Chim. Sin., 2020,36(4): UNSP 1902019. |
[36] | Liu Y F, Zeng L C, Xu C C, Geng F S, Shen M, Yuan Q H, Hu B W. Optimizing the Ueff value for DFT+U calculation of paramagnetic solid-state NMR shifts by double Fermi-contact-shift verification[J]. Chem. Phys. Lett., 2019,736:136779. |
[37] | Pigliapochi R, Pell A J, Seymour I D, Grey C P, Ceresoli D, Kaupp M. DFT investigation of the effect of spin-orbit coupling on the NMR shifts in paramagnetic solids[J]. Phys. Rev. B, 2017,95:054412 |
[38] | Hrobárik P, Reviakine R, Arbuznikov A V, Malkina O L, Malkin V G, Köhler F H, Kaupp M. Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: Validation on 3d metallocenes[J]. J. Chem. Phys., 2007,126:024107. |
[39] | Pigliapochi R, Seymour I D, Merlet C, Pell A J, Murphy D T, Schmid S, Grey C P. Structural characterization of the Li-ion battery cathode materials LiTixMn2-xO4 (0.2 ≤ x ≤ 1.5): A combined experimental7Li NMR and first-principles study[J]. Chem. Mater., 2018,30(3):817-829. |
[40] | Middlemiss D S, Ilott A J, Clément R l J, Strobridge F C, Grey C P. Density functional theory-based bond pathway decompositions of hyperfine shifts: Equipping solid-state NMR to characterize atomic environments in paramagnetic materials[J]. Chem. Mater., 2013,25:1723-1734. |
[41] | Castets A, Carlier D, Zhang Y, Boucher F, Ménétrier M. A DFT-based analysis of the NMR fermi contact shifts in tavoritelike LiMPO4·OH and MPO4·H2O (M = Fe, Mn, V)[J]. J. Phys. Chem. C, 2012,116:18002-16014. |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[4] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[5] | 杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001-. |
[6] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[7] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[8] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
[9] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[10] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[11] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[12] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[13] | 王振宇, 高学平. 金属和合金作为锂-硫电池硫正极催化载体[J]. 电化学(中英文), 2023, 29(4): 2217001-. |
[14] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[15] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||