[1] |
Daiyan R, Saputera W H, Masood H, Leverett J, Lu X Y, Amal R. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel[J]. Adv. Energy Mater., 2020, 11(10): 1903796.
|
[2] |
Song R B, Zhu W, Fu J, Chen Y, Liu L, Zhang J R, Lin Y, Zhu J J. Electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency[J]. Adv. Mater., 2020, 27(32): 1902106.
|
[3] |
Yao Y, Wang J, Shahid U B, Gu M, Wang H J, Li H, Shao M H. Electrochemical synjournal of ammonia from nitrogen under mild conditions: current status and challenges, electrochem[J]. Energy Rev., 2020, 3(2): 239-270.
|
[4] |
Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 834-849.
doi: 10.1002/ente.201600747
URL
|
[5] |
Kondratenko E V, Baltrusaitis G, Mul J, Larrazabal G O, Perez-Ramirez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environ. Sci., 2013, 6(11): 3112-3135.
|
[6] |
Jhong H R, Ma S C, Kenis P J A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities[J]. Curr. Opin. Chem. Eng., 2013, 2(2): 191-199.
doi: 10.1016/j.coche.2013.03.005
URL
|
[7] |
Lu Q, Jiao F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29(SI): 439-456.
doi: 10.1016/j.nanoen.2016.04.009
URL
|
[8] |
Zheng X, Cai Z P, Li Y S. Data linkage in smart internet of things systems: A consideration from a privacy perspective[J]. IEEE Commun. Mag., 2018, 56(9): 55-61.
|
[9] |
Liu L X, Zhou Y, Chang Y C, Zhang J R, Jiang L P, Zhu W, Lin Y. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density[J]. Nano Energy, 2020, 77: 105296.
doi: 10.1016/j.nanoen.2020.105296
URL
|
[10] |
Li Q Q, Rao X F, Sheng J W, Xu J, Yi J, Liu Y Y, Zhang J J. Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes[J]. J. CO2 Util., 2018, 27: 48-59.
|
[11] |
Jiang X X, Wang X K, Liu Z J, Wang Q L, Xiao X, Pan H P, Li M, Wang J W, Shao Y, Peng Z Q, Shen Y, Wang M K. A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate[J]. Appl. Catal. B: Environ., 2019, 259: 118040.
doi: 10.1016/j.apcatb.2019.118040
URL
|
[12] |
Xiong W, Yang J, Shuai L, Hou Y, Qiu M, Li X Y, Leung M K H. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction[J]. ChemEle-ctroChem, 2019, 6(24): 5951-5957.
|
[13] |
Chen A, Lin B L. A simple framework for quantifying ele-ctrochemical CO2 fixation[J]. Joule, 2018, 2(4): 594-606.
doi: 10.1016/j.joule.2018.02.003
URL
|
[14] |
Lee J, Lim J, Roh C W, Whang H S, Lee H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes[J]. J. CO2 Util., 2019, 31: 244-250.
|
[15] |
Ju W, Jiang F, Ma H, Pan Z, Zhao Y B, Pagani F, Rentsch D, Wang J, Battaglia C. Electrocatalytic reduction of gas-eous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes[J]. Adv. Energy Mater., 2019, 9(32): 1901514.
doi: 10.1002/aenm.v9.32
URL
|
[16] |
Kim H Y, Choi I, Ahn S H, Hwang S J, Yoo S J, Han J, Kim J, Park H, Jang J H, Kim S K. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid[J]. Int. J. Hydrogen Energy, 2014, 39(29): 16506-16512.
doi: 10.1016/j.ijhydene.2014.03.145
URL
|
[17] |
Gabardo C M, O’Brien C P, Edwards J P, McCallum C, Dinh Y, Xu C T, Sargent J, Li E H, Sinton D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019, 3(11): 2777-2791.
doi: 10.1016/j.joule.2019.07.021
URL
|
[18] |
Zhang F, Jin Z, Chen C, Tang Y, Mahyoub S A, Yan S, Cheng Z. Electrochemical conversion of CO2 to CO into a microchannel reactor system in the case of aqueous electrolyte[J]. Ind. Eng. Chem. Res., 2020, 59(13): 5664-5674.
doi: 10.1021/acs.iecr.9b07014
URL
|
[19] |
Yang H Z, Kaczur J J, Sajjad S D, Masel R I. Electrochemical conversion of CO2 to formic acid utilizing sustainion (TM) membranes[J]. J. CO2 Util., 2017, 20: 208-217.
|
[20] |
Larrazabal G O, Strom-Hansen P, Heli J P, Zeiter K, Therkildsen K T, Chorkendorff I, Seger B. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer[J]. ACS Appl. Mater. Inter., 2019, 11(44): 41281-41288.
doi: 10.1021/acsami.9b13081
|
[21] |
Liu J Y, Peng L W, Zhou Y, Lv L, Fu J, Lin J, Guay D, Qiao J L. Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction[J]. ACS Sustain. Chem. Eng., 2019, 7(18): 15739-15746.
doi: 10.1021/acssuschemeng.9b03892
URL
|
[22] |
Gong Q F, Ding P, Xu M Q, Zhu X R, Wang M Y, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng Z X, Li Y F, Zhou W, Li Y G. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nat. Commun., 2019, 10(1): 2807.
doi: 10.1038/s41467-019-10819-4
URL
|
[23] |
Cifrain M, Kordesch K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. J. Power Sources, 2004, 127: 234-242.
doi: 10.1016/j.jpowsour.2003.09.019
URL
|
[24] |
Peng L W, Wang Y X, Masood I, Zhou B, Wang Y F, Lin J, Qiao J L, Zhang F Y. Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction[J]. Appl. Catal. B-Environ., 2020, 264: 118447.
doi: 10.1016/j.apcatb.2019.118447
URL
|
[25] |
Xiang H, Miller H A, Bellini M, Christensen H, Scott K, Rasul S, Yu E H. Production of formate by CO2 electrochemical reduction and its application in energy storage[J]. Sustain. Energ. Fuels, 2020, 4(1): 277-284.
doi: 10.1039/C9SE00625G
URL
|
[26] |
Hatsukade T, Kuhl K P, Cave E R, Abram D N, Jaramillo T F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Phys. Chem. Chem. Phys., 2014, 16(27): 138-149.
|
[27] |
Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energ. Environ. Sci., 2019, 12(5): 1442-1453.
doi: 10.1039/c8ee03134g
|