[1] Montoya J H, Seitz L C, Chakthranont P, et al. Materials for solar fuels and chemicals[J]. Nature Materials, 2017, 16(1): 70-81.
[2] Gao D F, Cai F, Wang G X, et al. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 39-44.
[3] Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452.
[4] Larrazábal G O, Martín A J, Pérez-Ramírez J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering[J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3933-3944.
[5] Wang Y H, Liu J L, Wang Y F, et al. Tuning of CO2 reduction selectivity on metal electrocatalysts[J]. Small, 2017, 13(43): 1701809.
[6] Zhou J H, Zhang Y. Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective[J]. Reaction Chemistry & Engineering, 2018, 3: 591-625.
[7] Zhuang T T, Liang Z Q, Seifitokaldani A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1(6): 421-428.
[8] Gao D F, Zhang Y, Zhou Z W, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655.
[9] Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.
[10] Jiang B(蒋孛), Zhang L N(张莉娜), Qin X X(秦先贤), et al. Electrodeposition of RuO2 layers on TiO2 nanotube array toward CO2 electroreduction[J]. Journal of the Electrochemistry(电化学), 2017, 23(2): 238-244.
[11] Xie H, Wang T Y, Liang J S, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54.
[12] Yan C C, Li H B, Ye Y F, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210.
[13] Wang X Q, Chen Z, Zhao X Y, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2018, 57(7): 1944-1948.
[14] Gao D F, Zhou H, Cai F, et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction[J]. ACS Catalysis, 2018, 8(2): 1510-1519.
[15] Gao D F, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4297.
[16] Min X, Kanan M W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of the American Chemical Society, 2015, 137(14): 4701-4708.
[17] Huang H W, Jia H H, Liu Z, et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform[J]. Angewandte Chemie International Edition, 2017, 56(13): 3594-3598.
[18] Zhu W J, Zhang L, Yang P P, et al. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance[J]. Angewandte Chemie International Edition, 2018, 57(36): 11544-11548.
[19] Jiang B, Zhang X G, Jiang K, et al. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces[J]. Journal of the American Chemical Society, 2018, 140(8): 2880-2889.
[20] Klinkova A, De Luna P, Dinh C T, et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate[J]. ACS Catalysis, 2016, 6(12): 8115-8120.
[21] Zhou F L, Li H T, Fournier M, et al. Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: stabilized performance by suppression of CO formation[J]. ChemSusChem, 2017, 10(7): 1509-1516.
[22] Rahaman M, Dutta A, Broekmann P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017, 10(8): 1733-1741.
[23] Sheng W C, Kattel S, Yao S Y, et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J]. Energy & Environmental Science, 2017, 10(5): 1180-1185.
[24] Zhang W Y, Qin Q, Dai L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57(30): 9475-9479.
[25] Bai X F, Chen W, Zhao C C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017, 56(40): 12219-12223.
[26] Zhang F Y, Sheng T, Tian N, et al. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols[J]. Chemical Communications, 2017, 53(57): 8085-8088.
[27] Tao H C, Sun X F, Back S, et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO[J]. Chemical Science, 2018, 9(2): 483-487.
[28] Ma S, Sadakiyo M, Heim M, et al. Electroreduction of CO2 to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017, 139(1): 47-50.
[29] Kortlever R, Peters I, Balemans C, et al. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons[J]. Chemical Communications, 2016, 52(67): 10229-10232.
[30] Yin Z, Gao D F, Yao S Y, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO[J]. Nano Energy, 2016, 27: 35-43.
[31] Gao D F, McCrum I T, Deo S, et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design[J]. ACS Catalysis, 2018, 8(11):10012-10020.
[32] Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783.
[33] Gao D, Scholten F, Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catalysis, 2017, 7(8): 5112-5120.
[34] Gao D F, Wang J, Wu H H, et al. pH Effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles[J]. Electrochemistry Communications, 2015, 55: 1-5.
[35] Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, et al. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size[J]. Applied Energy, 2015, 157: 165-173.
[36] Mistry H, Behafarid F, Reske R, et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions[J]. ACS Catalysis, 2016, 6(2): 1075-1080.
[37] Wang X L, Varela A S, Bergmann A, et al. Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx[J]. ChemSusChem, 2017, 10(22): 4642-4649.
[38] Yu J L, Liu H Y, Song S Q, et al. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity[J]. Applied Catalysis A: General, 2017, 545: 159-166.
[39] Gao D F, Zhou H, Cai F, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles[J]. Nano Research, 2017, 10(6): 2181-2191.
[40] Lv Q, Meng Q L, Liu W W, et al. Pd-PdO interface as active site for HCOOH selective dehydrogenation at ambient condition[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2081-2088.
[41] Cai F, Gao D F, Zhou H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical Science, 2017, 8(4): 2569-2573.
[42] Cai F, Gao D F, Si R, et al. Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO2 electroreduction to formate[J]. Electrochemistry Communications, 2017, 76: 1-5.
[43] Nesselberger M, Roefzaad M, Fayçal Hamou R, et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters[J]. Nature Materials, 2013, 12(10): 919-924.
[44] Taylor S, Fabbri E, Levecque P, et al. The Effect of platinum loading and surface morphology on oxygen reduction activity[J]. Electrocatalysis, 2016, 7(4): 287-296.
[45] Antolini E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance[J]. Applied Catalysis B: Environmental, 2016, 181: 298-313.
[46] Hauff K, Tuttlies U, Eigenberger G, et al. A global description of DOC kinetics for catalysts with different platinum loadings and aging status[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 10-18.
[47] Kang S B, Han S J, Nam S B, et al. Activity function describing the effect of Pd loading on the catalytic performance of modern commercial TWC[J]. Chemical Engineering Journal, 2012, 207(SI): 117-121.
|