电化学(中英文) ›› 2022, Vol. 28 ›› Issue (4): 2106091. doi: 10.13208/j.electrochem.210609
所属专题: “电催化和燃料电池”专题文章
张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞*()
收稿日期:
2021-06-08
修回日期:
2021-07-11
出版日期:
2022-04-28
发布日期:
2021-07-29
基金资助:
Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang*()
Received:
2021-06-08
Revised:
2021-07-11
Published:
2022-04-28
Online:
2021-07-29
Contact:
*Tel: (86-592)2181081, E-mail: yxjiang@xmu.edu.cn
摘要:
Pt基催化剂是氧还原反应的优良催化剂,改善其活性和稳定性是燃料电池商业化的关键。本文利用金属有机框架衍生的氮掺杂碳材料为载体,通过浸渍、冻干和简单热处理的方法合成了Pt/NC、Pt3Zn/NC-L和Pt3Zn/NC-H催化剂,平均粒径均在2 nm左右。在Pt中引入Zn元素引起其晶格收缩,使Pt-Pt键变短,优化了Pt与含氧中间体的结合,增强氧还原反应的活性。在高合金化程度的Pt3Zn/NC-H催化剂上,氧还原反应的半波电位为0.903 V,较商业Pt/C正移57 mV。0.9 V下的质量活性和面积比活性分别是商业Pt/C的4.50倍和3.33倍。在O2饱和的0.1 mol·L-1 HClO4溶液,0.6 ~ 1.0 V(vs. RHE)进行10000周稳定性测试,商业Pt/C的质量活性和面积比活性分别衰减25.00%和23.80%,而在Pt3Zn/NC-H催化剂上未观察到衰减。
张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091.
Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang. Adjusting the Alloying Degree of Pt3Zn to Improve Acid Oxygen Reduction Activity and Stability[J]. Journal of Electrochemistry, 2022, 28(4): 2106091.
[1] |
Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y, Li Q. Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain[J]. Adv. Energy Mater., 2019, 9(17): 1803771.
doi: 10.1002/aenm.201803771 URL |
[2] |
Colón-Mercado H R, Kim H, Popov B N. Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells[J]. Electrochem Commun., 2004, 6(8): 795-799.
doi: 10.1016/j.elecom.2004.05.028 URL |
[3] |
Yoo T Y, Yoo J M, Sinha A K, Bootharaju M S, Jung E, Lee H S, Lee B H, Kim J, Antink W H, Kim Y M, Lee J, Lee E, Lee D W, Cho S P, Yoo S J, Sung Y E, Hyeon T. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis[J]. J. Am. Chem. Soc., 2020, 142(33): 14190-14200.
doi: 10.1021/jacs.0c05140 URL |
[4] |
Xiong Y, Xiao L, Yang Y, DiSalvo F J, Abruña H D. High-loading intermetallic Pt3Co/C core-shell nanoparticles as enhanced activity electrocatalysts toward the oxygen reduction reaction (ORR)[J]. Chem Mater., 2018, 30(5): 1532-1539.
doi: 10.1021/acs.chemmater.7b04201 URL |
[5] |
Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J M, Lou X W, Xia B Y. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856.
doi: 10.1126/science.aaw7493 URL |
[6] |
Escudero-Escribano M, Malacrida P, Hansen M H, Vej-Hansen U G, Velazquez-Palenzuela A, Tripkovic V, Schiotz J, Rossmeisl J, Stephens I E L, Chorkendorff I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction[J]. Science, 2016, 352(6281): 73-76.
doi: 10.1126/science.aad8892 pmid: 27034369 |
[7] |
Glüsen A, Dionigi F, Paciok P, Heggen M, Müller M, Gan L, Strasser P, Dunin-Borkowski R E, Stolten D. Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells[J]. ACS Catal., 2019, 9(5): 3764-3772.
doi: 10.1021/acscatal.8b04883 URL |
[8] |
Wu D F, Zhang W, Lin A J, Cheng D J. Low Pt-content ternary PtNiCu nanoparticles with hollow interiors and accessible surfaces as enhanced multifunctional electrocatalysts[J]. ACS Appl. Mater. Interfaces, 2020, 12(8): 9600-9608.
doi: 10.1021/acsami.9b20076 URL |
[9] |
Zhang B T, Fu G T, Li Y T, Liang L C, Grundish N S, Tang Y W, Goodenough J B, Cui Z M. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size[J]. Angew. Chem. Int. Ed., 2020, 59(20): 7857-7863.
doi: 10.1002/anie.201916260 URL |
[10] |
Liang J S, Zhao Z L, Li N, Wang X M, Li S Z, Liu X, Wang T Y, Lu G, Wang D L, Hwang B J, Huang Y H, Su D, Li Q. Biaxial strains mediated oxygen reduction electrocatalysis on fenton reaction resistant L10-PtZn fuel cell cathode[J]. Adv. Energy Mater., 2020, 10(29): 2000179.
doi: 10.1002/aenm.202000179 URL |
[11] |
Morozan A, Jousselme B, Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy Environ. Sci., 2011, 4(4): 1238-1254.
doi: 10.1039/c0ee00601g URL |
[12] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
doi: 10.1126/science.aad4998 URL |
[13] |
Xue Y K, Li H Q, Ye X W Y, Yang S L, Zheng Z P, Han X, Zhang X B, Chen L N, Xie Z X, Kuang Q, Zheng L S. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells[J]. Nano Res., 2019, 12(10): 2490-2497.
doi: 10.1007/s12274-019-2473-x URL |
[14] |
Kim J, Rong C B, Lee Y, Liu J P, Sun S H. From core/shell structured FePt/Fe3S4/MgO to ferromagnetic FePt nanoparticles[J]. Chem. Mater., 2008, 20(23): 7242-7245.
doi: 10.1021/cm8024878 URL |
[15] |
Qi Z Y, Xiao C X, Liu C, Goh T W, Zhou L, Maligal-Ganesh R, Pei Y C, Li X L, Curtiss L A, Huang W Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction[J]. J. Am. Chem. Soc., 2017, 139(13): 4762-4768.
doi: 10.1021/jacs.6b12780 URL |
[16] |
Li J Z, Chen M J, Cullen D A, Hwang S, Wang M Y, Li B Y, Liu K X, Karakalos S, Lucero M, Zhang H G, Lei C, Xu H, Sterbinsky G E, Feng Z X, Su D, More K L, Wang G F, Wang Z B, Wu G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J]. Nature Catalysis, 2018, 1(12): 935-945.
doi: 10.1038/s41929-018-0164-8 URL |
[17] |
Wang J, Huang Z Q, Liu W, Chang C R, Tang H L, Li Z J, Chen W X, Jia C J, Yao T, Wei S Q, Wu Y E, Li Y D. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. J. Am. Chem. Soc., 2017, 139(48): 17281-17284.
doi: 10.1021/jacs.7b10385 URL |
[18] |
Zhang Z C, Tian X C, Zhang B W, Huang L, Zhu F C, Qu X M, Liu L, Liu S, Jiang Y X, Sun S G. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance[J]. Nano Energy, 2017, 34: 224-232.
doi: 10.1016/j.nanoen.2017.02.023 URL |
[19] |
Zhao W Y, Ye Y K, Jiang W J, Li J, Tang H B, Hu J S, Du L, Cui Z M, Liao S J. Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2020, 8(31): 15822-15828.
doi: 10.1039/D0TA01437K URL |
[20] |
Ao X, Zhang W, Zhao B, Ding Y, Nam G, Soule L, Abdelhafiz A, Wang C D, Liu M L. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction[J]. Energy Environ. Sci., 2020, 13(9): 3032-3040.
doi: 10.1039/D0EE00832J URL |
[21] | Hu Q P(胡清平), Tao Z Y(陶芝勇), Xiao L(肖丽), Zhuang L(庄林), Lu J T(陆君涛), Li X H(李新海). Study on preparation and electrochemical performance of the PdNi/C catalysts[J]. Chem. World(化学世界), 2018, 59(6):376-380. |
[22] |
Tayal J, Rawat B, Basu S. Bi-metallic and tri-metallic Pt-Sn/C, Pt-Ir/C, Pt-Ir-Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell[J]. Int. J. Hydrogen Energ., 2011, 36(22): 14884-14897.
doi: 10.1016/j.ijhydene.2011.03.035 URL |
[23] |
Zhu J, Zheng X, Wang J, Wu Z X, Han L L, Lin R Q, Xin H L L, Wang D L. Structurally ordered Pt-Zn/C series nano-particles as efficient anode catalysts for formic acid electrooxidation[J]. J. Mater. Chem. A, 2015, 3(44): 22129-22135.
doi: 10.1039/C5TA05699C URL |
[24] |
Li J R, Sharma S, Wei K C, Chen Z T, Morris D, Lin H H, Zeng C, Chi M F, Yin Z Y, Muzzio M, Shen M Q, Zhang P, Peterson A A, Sun S H. Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction[J]. J. Am. Chem. Soc., 2020, 142(45): 19209-19216.
doi: 10.1021/jacs.0c08962 URL |
[25] |
Sheng Z H, Shao Lin, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350-4358.
doi: 10.1021/nn103584t URL |
[26] |
Zhang J W, Yuan Y L, Gao L, Zeng G M, Li M F, Huang H W. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies[J]. Adv. Mater., 2021, 33(20): 2006494.
doi: 10.1002/adma.202006494 URL |
[27] |
Liu J, Bak J, Roh J, Lee K S, Cho A, Han J W, Cho E. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction[J]. ACS Catal., 2021, 11(1): 466-475.
doi: 10.1021/acscatal.0c03330 URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[4] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[5] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[6] | 李春艳, 张蕊, 巴笑杰, 姜晓乐, 阳耀月. 氮掺杂多孔碳包覆铁纳米粒子催化剂用于高效碱性介质中氧还原反应[J]. 电化学(中英文), 2023, 29(5): 2210241-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[9] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[10] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[11] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[12] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[13] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[14] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[15] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||