电化学(中英文) ›› 2021, Vol. 27 ›› Issue (6): 605-613. doi: 10.13208/j.electrochem.210125
收稿日期:
2021-01-25
修回日期:
2021-03-01
出版日期:
2021-12-28
发布日期:
2021-03-20
通讯作者:
向兴德
E-mail:xiangxingde@nefu.edu.cn
基金资助:
Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang*()
Received:
2021-01-25
Revised:
2021-03-01
Published:
2021-12-28
Online:
2021-03-20
Contact:
Xing-De Xiang
E-mail:xiangxingde@nefu.edu.cn
摘要:
水系钠离子电池具有钠资源丰富、成本低廉、安全可靠、维护简单等特点,在可再生能源规模储存领域具有重要应用前景。NASICON型NaTi2(PO4)3具有可逆容量高、工作电位低、离子传输快等优点,是目前最受关注的水系钠离子电池负极材料。但是,该材料在传统的水系电解液中结构不稳定,循环性能不足。本论文通过调控Na2SO4浓度和引入MgSO4添加剂,构建了一种新型硫酸盐功能电解液(2 mol·L-1 Na2SO4 + 0.3 mol·L-1 MgSO4)。该电解液能够显著增强NaTi2(PO4)3/C材料在充放电循环过程中的结构稳定性,从而提高其电化学可逆性和稳定性。电化学测试表明,NaTi2(PO4)3/C基于该电解液在100 mA·g-1条件下的可逆容量为93.4 mAh·g-1,循环100次后容量保持率高达96.5%;基于该电解液构建的Na2Ni[Fe(CN)6]|NaTi2(PO4)3/C电池可以稳定循环500次以上。本论文结合XRD、XPS等技术讨论分析了该电解液的功能作用机制,其研究结果为设计低成本高性能水系钠离子电池提供了新思路和实验基础。
李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613.
Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang. Functional Sulfate Electrolytes Enable the Enhanced Cycling Stability of NaTi2(PO4)3/C Anode Material for Aqueous Sodium-Ion Batteries[J]. Journal of Electrochemistry, 2021, 27(6): 605-613.
[1] | Liu SY(刘双), Shao L Y(邵涟漪), Zhang X J(张雪静), Tao Z J(陶占军), Chen J(陈军). Advances in electrode materials for aqueous rechargeable sodium-ion batteries[J]. Acta Phys. Chim. Sin.(物理化学学报), 2018, 34(6): 581-597. |
[2] | Cao Y(曹翊), Wang Y G(王永刚), Wang Q(王青), Zhang Z Y(张兆勇), Che Y(车勇), Xia Y Y(夏永姚), Dai X(戴翔). Development of aqueous sodium ion battery[J]. Energy Storage Sci. Tech.(储能科学与技术), 2016, 5: 317-323. |
[3] |
Guo Z W, Zhao Y, Ding Y X, Dong X L, Chen L, Cao J Y, Wang C C, Xia Y Y, Peng H S, Wang Y G. Multi-functional flexible aqueous sodium-ion batteries with high safety[J]. Chem, 2017, 3(2): 348-362.
doi: 10.1016/j.chempr.2017.05.004 URL |
[4] | Liu Y C(刘永畅), Chen C C(陈程成), Zhang N(张宁), Tao Z L(陶占良), Chen J(陈军). Research and application of key materials for sodium ion batteries[J]. J. Electrochem.(电化学), 2016, 22(5): 437-452. |
[5] |
Zhang F, Li W F, Xiang X D, Sun M L. Highly stable Na-storage performance of Na0.5Mn0.5Ti0.5O2 microrods as cathode for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2017, 802: 22-26.
doi: 10.1016/j.jelechem.2017.08.042 URL |
[6] |
Wang Y S, Mu L Q, Liu J, Yang Z Z, Yu X Q, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries[J]. Adv. Energy Mater., 2015, 5(22): 1501005.
doi: 10.1002/aenm.201501005 URL |
[7] |
Zhang X Q, Hou Z G, Li X N, Liang J W, Zhu Y C, Qian Y T. Na birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes[J]. J. Mater. Chem. A, 2016, 4(3): 856-860.
doi: 10.1039/C5TA08857G URL |
[8] | Lin X H(林兴灏), Chi X W(迟晓伟), Liu Y(刘宇), Yang J H(杨建华). Na3+xV2-xMgx(PO4)3 cathode preparation and its application in aqueous sodium-ion batteries[J]. Chin. J. Power Sources(电源技术), 2019, 43: 1821-1824. |
[9] |
Liu S, Wang L B, Liu J, Zhou M, Nian Q S, Feng Y Z, Tao Z L, Shao L Y. Na3V2(PO4)2F3-SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries[J]. J. Mater. Chem. A, 2019, 7(1): 248-256.
doi: 10.1039/C8TA09194C URL |
[10] |
Lei P, Wang Y, Zhang F, Wan X, Xiang X D. Carbon-coated Na2.2V1.2Ti0.8(PO4)3 cathode with excellent cycling performance for aqueous sodium-ion batteries[J]. ChemElectroChem, 2018, 5(17): 2482-2487.
doi: 10.1002/celc.v5.17 URL |
[11] |
Fernadez-Ropero A J, Zarrabeitia M, Reynaud M, Rojo T, Casas-Cabanas M. Toward safe and sustainable batteries: Na4Fe3(PO4)2P2O7 as a low cost cathode for rechargeable aqueous Na-ion batteries[J]. J. Phys. Chem. C, 2018, 122(1): 133-142.
doi: 10.1021/acs.jpcc.7b09803 URL |
[12] |
Li Y(李勇), He W X(何玮鑫), Zheng X Y(郑芯月), Yu S L(于胜兰), Li H T(李海同), Li H Y(黎弘毅), Zhang R(张蓉), Wang Y(王雨). Prussian blue cathode materials for aqueous sodium-ion batteries: Preparation and electrochemical performance[J]. J. Inorg. Mater.(无机材料学报), 2019, 34(4): 365-372.
doi: 10.15541/jim20180272 |
[13] |
Wang W L(王武练), Zhang J(张军), Wang Q S(王秋实), Chen L(陈亮), Wang Z P(王兆平). High-quality Fe4[Fe(CN)6]3 nanocubes: Synjournal and electrochemical performance as cathode material for aqueous sodium-ion battery[J]. J. Inorg. Mater.(无机材料学报), 2019, 34(12): 1301-1308.
doi: 10.15541/jim20190076 |
[14] |
Luo D X, Lei P, Tian G R, Huang Y X, Ren X F, Xiang X D. Insight into electrochemical properties and reaction mechanism of a cobalt-rich Prussian Blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries[J]. J. Phys. Chem. C, 2020, 124(11): 5958-5965.
doi: 10.1021/acs.jpcc.9b11758 URL |
[15] |
Cai D P, Yang X H, Qu B H, Wang T H. Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries[J]. Chem. Commun., 2017, 53(50): 6780-6783.
doi: 10.1039/C7CC02516E URL |
[16] |
Zhang Q C, Man P, He B, Li C W, Li Q L, Pan Z H, Wang Z X, Yang J, Wang Z, Zhou Z Y, Lu X H, Niu Z Q, Yao Y G, Wei L. Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries[J]. Nano Energy, 2020, 67: 104212.
doi: 10.1016/j.nanoen.2019.104212 URL |
[17] |
Qiu Y G, Yu Y H, Xu J, Liu Y, Ou M Y, Sun S X, Wei P, Deng Z, Xu Y, Fang C, Li Q, Han J T, Huang Y H. Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries: Na1.5Ti1.5Fe0.5(PO4)3[J]. J. Mater. Chem. A, 2019, 7(43): 24953-24963.
doi: 10.1039/C9TA08829F URL |
[18] |
Lei P, Liu K, Wan X, Luo D X, Xiang X D. Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries[J]. Chem. Commun., 2019, 55(4): 509-512.
doi: 10.1039/C8CC07668E URL |
[19] |
Gu T T, Zhou M, Liu M Y, Wang K L, Cheng S J, Jiang K. A polyimide MWCNTs composite as high capacity anode for aqueous SIBs[J]. RSC Adv., 2016, 6: 53319-53323.
doi: 10.1039/C6RA09075C URL |
[20] |
Deng W W, Shen Y F, Qian J F, Yang H X. A polyimide anode with high capacity and superior cyclability for aqueous Na-ion batteries[J]. Chem. Commun., 2015, 51(24): 5097-5099.
doi: 10.1039/C5CC00073D URL |
[21] |
Wu M G, Ni W, Hu J, Ma J M. NASICON-structured NaTi2(PO4)3 for sustainable energy storage[J]. Nano-Micro Lett., 2019, 11(1): 44.
doi: 10.1007/s40820-019-0273-1 URL |
[22] |
Zheng W T, Lei P, Luo D X, Huang Y X, Tian G R, Xiang X D. Understanding the effect of structural compositions on electrochemical properties of titanium-based polyanionic compounds for superior sodium storage[J]. Solid State Ionics, 2020, 345: 115194.
doi: 10.1016/j.ssi.2019.115194 URL |
[23] |
Malchik F, Shpigel N, Levi M D, Penki T R, Gavriel B, Bergman G, Turgeman M, Aurbach D, Gogotsi Y. MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte[J]. Nano Energy, 2021, 79: 105433.
doi: 10.1016/j.nanoen.2020.105433 URL |
[24] |
Mohamed A I, Whitacre J F. Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: Relating pH increases to long term stability[J]. Electrochim. Acta, 2017, 235: 730-739.
doi: 10.1016/j.electacta.2017.03.106 URL |
[25] |
Zhan X W, Shirpour M. Evolution of solid/aqueous interface in aqueous sodium-ion batteries[J]. Chem. Commun., 2017, 53(1): 204-207.
doi: 10.1039/C6CC08901A URL |
[26] |
Luo D X, Lei P, Huang Y X, Tian G R, Xiang X D. Improved electrochemical performance of graphene-integrated NaTi2(PO4)3/C anode in high-concentration electrolyte for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2019, 838: 66-72.
doi: 10.1016/j.jelechem.2019.02.057 URL |
[27] |
Lei P, Li S J, Luo D X, Huang Y X, Tian G R, Xiang X D. Fabricating a carbon-encapsulated NaTi2(PO4)3 framework as a robust anode material for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2019, 847: 113180.
doi: 10.1016/j.jelechem.2019.05.062 URL |
[28] |
Li X N, Zhu X B, Liang J W, Hou Z G, Wang Y, Lin N, Zhu Y C, Qian Y T. Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries[J]. J. Electrochem. Soc., 2014, 161(6): A1181-A1187.
doi: 10.1149/2.0081409jes URL |
[29] |
Zhang F, Li W F, Xiang X D, Sun M L. Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries[J]. Chem. Eur. J., 2017, 23(52): 12944-12948.
doi: 10.1002/chem.v23.52 URL |
[30] |
Gao H C, Goodenough J B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3[J]. Angew. Chem. Int. Ed., 2016, 55(41): 12768-12772.
doi: 10.1002/anie.201606508 URL |
[31] |
Wang H B, Zhang T R, Chen C, Ling M, Lin Z, Zhang S Q, Pan F, Liang C D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3[J]. Nano Res., 2017, 11(1): 490-498.
doi: 10.1007/s12274-017-1657-5 URL |
[32] |
Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C Y, Hu Y S, Xu K, Wang C S. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Adv. Energy Mater., 2017, 7(21): 1701189.
doi: 10.1002/aenm.v7.21 URL |
[33] |
Zhang H, Jeong S, Qin B, Carvalho D V, Buchholz D, Passerini S. Towards high-performance aqueous sodium-ion batteries: Stabilizing the solid/liquid interface for NASICON-type Na2VTi(PO4)3 using concentrated electro-lytes[J]. ChemSusChem, 2018, 11(8): 1382-1389.
doi: 10.1002/cssc.v11.8 URL |
[34] |
Kuhnel R S, Reber D, Battaglia C. A high-voltage aqueous electrolyte for sodium-ion batteries[J]. ACS Energy Lett., 2017, 2(9): 2005-2006.
doi: 10.1021/acsenergylett.7b00623 URL |
[35] |
Mao W T, Zhang S J, Cao F P, Pan J L, Ding Y M, Ma C, Li M L, Hou Z G, Bao K Y T, Qian Y T. Synjournal of NaTi2(PO4)3@C microspheres by an in situ process and their electrochemical properties[J]. J. Alloys Compd., 2020, 842: 155300.
doi: 10.1016/j.jallcom.2020.155300 URL |
[36] |
Zhao Y Y, Wei Z X, Pang Q, Wei Y J, Cai Y M, Fu Q, Du F, Sarapulova A, Ehrenberg H, Liu B B, Chen G. NASICON-type Mg0.5Ti2(PO4)3 negative electrode material exhibits different electrochemical energy storage mechanisms in Na-ion and Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(5): 4709-4718.
doi: 10.1021/acsami.6b14196 URL |
[1] | 范佳琪, 宋焕巧, 安佳莹, 阿依达娜·阿曼太, 陈默. 碳限域Li3VO4纳米材料的制备及其储锂性能[J]. 电化学(中英文), 2023, 29(11): 211203-. |
[2] | 杨武, 郑雪凡, 武玉琪, 汤士军, 龚正良. LiF-Sn复合修饰层改性石榴石/锂金属界面[J]. 电化学(中英文), 2023, 29(11): 2204071-. |
[3] | 殷秀平, 赵玉峰, 张久俊. 钠离子电池硬碳基负极材料的研究进展[J]. 电化学(中英文), 2023, 29(10): 2204301-. |
[4] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[5] | 黄夏敏, 张丽红, 吴顺情, 杨勇, 朱梓忠. ANiN(A = Li, Na, Mg, Ca)的结构、热力学、弹性和电子性质的第一性原理研究[J]. 电化学(中英文), 2021, 27(3): 339-350. |
[6] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[7] | 陈嘉卉, 钟晓斌, 何超, 王晓晓, 许清池, 李剑锋. 中空核壳结构Ni1.2Co0.8P@N-C钠离子电池负极材料的制备及拉曼研究[J]. 电化学(中英文), 2020, 26(3): 328-337. |
[8] | 徐 坤, 周开岭, 汪 浩, 刘晶冰, 严 辉. 聚苯胺电致变色薄膜在不同颜色区间的电化学循环稳定性研究[J]. 电化学(中英文), 2019, 25(6): 690-698. |
[9] | 王凡凡, 刘晓斌, 陈龙, 陈程成, 刘永畅, 范丽珍. 室温钠离子电池关键材料研究进展[J]. 电化学(中英文), 2019, 25(1): 55-76. |
[10] | 颜冲, 寇华日, 颜波, 刘晓静, 李德军, 李喜飞. Ni/Mn3O4/NiMn2O4@RGO空心微球负极的制备及其储钠性能[J]. 电化学(中英文), 2019, 25(1): 112-121. |
[11] | 高天一,龚正良. 碳包覆硅/石墨复合材料的制备及其电化学性能研究[J]. 电化学(中英文), 2018, 24(3): 253-261. |
[12] | 李全一,杨琪,赵艳红. 二氧化钼-碳复合涂层的电化学性能研究[J]. 电化学(中英文), 2018, 24(2): 160-165. |
[13] | 王友,曾一文,钟星,刘星,汤泉. 锂离子电池负极材料Li3V2(BO3)3/C 复合材料的合成及电化学性能研究[J]. 电化学(中英文), 2018, 24(2): 174-181. |
[14] | 袁双,朱云海,王赛,孙涛,张新波,王强. 钠离子电池微/纳结构电极材料研究[J]. 电化学(中英文), 2016, 22(5): 464-476. |
[15] | 杨亚雄,马瑞军,高明霞,潘洪革,刘永锋. 晶态Li12Si7锂离子电池负极材料的电化学性能研究[J]. 电化学(中英文), 2016, 22(5): 521-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||