[1] Pan H L, Hu Y S, Chen L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338.
[2] Lou X W, Deng D, Lee J L, et al. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium ion battery electrodes[J]. Advanced Materials, 2008, 20(2): 258-262.
[3] Kundu D, Talaie E, Duffort V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11): 3431-3448.
[4] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-46.
[5] Guo Y G, Hu J S, Wan L J. Nanostructure materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887.
[6] Samin N K, Rusdi R, Kamarudin N, et al. Synthesis and battery studies of sodium cobalt oxides, NaCoO2 cathodes[J]. Advancement of Materials and Nanotechnology, 2012, 545: 185-189.
[7] Liu Y, QiaoY, Zhang W, et al. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes[J]. Nano Energy, 2015, 12: 386-393.
[8] Jian Z L, Han W Z, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J]. Advanced Energy Materials, 2013, 3(2): 156-160.
[9] Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11: 512-517.
[10] Su D W, Wang G X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries[J]. ACS Nano, 2013, 7(12): 11218-11226.
[11] Yuan S, Liu Y B, Xu D, et al. Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries; Advanced Science, 2014, 2(3): 1400018.
[12] Liu H K, Wand G X, Guo Z P, et al. Nanomaterials for lithium-ion rechargeable batteries[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(1): 1-15.
[13] Kim D, Lee E, Slater M, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochemistry Communications, 2012, 18: 66-69.
[14] Tepavcevic S, Xiong H, Stamenkovic V R, et al. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries[J]. ACS Nano, 2012, 6(1): 530-538.
[15] Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries[J]. Advanced Materials, 2003, 15(9): 736-739.
[16] Li C, Yin C, Gu L, et al. An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries[J]. Journal of the American Chemical Society, 2013, 135(31): 11425-11428.
[17] Ma D L, Cao Z Y, Wang H G, et al. Three-dimensionally ordered macroporous FeF3 and itsin situ homogenous polymerization coating for high energy and power density lithium ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8538.
[18] Ma D L, Wang H G, Li Y, et al. In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries[J]. Nano Energy, 2014, 10: 295-304.
[19] Yu D Y W, Prjkhodchenko P V, Mason C W, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries[J]. Nature Communications, 2013, 4: 2922.
[20] Yuan S, Ma D L, Wang S, et al. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries[J]. Materials Letters, 2015, 145, 104-107.
[21] Wang H G, Yuan S, Ma D L, et al. Electrospun materials for rechargeable batteries: from structure evolution to electrochemical performance[J]. Energy & Environmental Science, 2015, 8(6): 1660-1681.
[22] Liang Y L, Zhang P, Yang S Q, et al. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(5): 600-605.
[23] Wang S W, Wang L J, Zhang K, et al. Organic Li4C8H2O6 nanosheets for lithium-ion batteries[J]. Nano Letters, 2013, 13(9): 4404-4409.
[24] Wang S W, Wang L J, Zhu Z Q, et al. All organic sodium-ion batteries with Na4C8H2O6[J]. Angewandte Chemie International Edition, 2014, 126(23): 6002-6006.
[25] Wang H G, Yuan S, Ma D L, et al. Tailored aromatic carbonyl derivative polyimides for high power and long-cycle sodium-organic batteries[J]. Advanced Energy Materials, 2014, 4(7): 201301651.
[26] Tang K, Fu L J, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials, 2012, 2(7): 873-877.
[27] Ding J, Wang H L, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015.
[28] Fu L J, Tang K, Song K P, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3): 1384-1389.
[29] Zhou X S, Zhu X S, Liu X, et al. Ultralong cycle life sodium-ion battery anodes using a graphene-templated carbon hybrid[J]. Journal of Physical Chemistry C, 2014, 118(39): 22426-22431.
[30] Irisarri E, Ponrouch A, Palacin M R. Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries[J]. Journal of the Electrochemical Society, 2015, 162(14), A2476-2482.
[31] Luo W, Bommier C, Jian Z. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4), 2626–2631.
[32] Bommier C, Luo W, Gao W Y. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements[J]. Carbon, 2014, 76, 165–174.
[33] Lyu Z Y, Yang L J, Xu D, et al. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries[J]. Nano Research, 2015, 8(11): 3535-3543.
[34] Cao Y L, Xiao L F, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12 (7): 3783–3787.
[35] Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem, 2013, 6(1): 56–60.
[36] Yang F H, Zhang Z A, Du K, et al. Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries[J]. Carbon, 2015, 91: 88-95.
[37] Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1): 265-270.
[38] Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Natture Communications, 2013, 4: 2365.
[39] Huang X L, Wang R Z, Xu D, et al. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries[J]. Advanced Functional Materials, 2013, 23(35): 4345-4353.
[40] Huang Y, Huang X L, Lian J S, et al. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical
structure for high-capacity and high-rate lithium storage[J]. Journal of Materials Chemistry, 2012, 22(7): 2844.
[41] Yuan S, Huang X L, Ma D L, et al. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode[J]. Advanced Materials, 2014, 26(14): 2273-2279.
[42] Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.
[43] Rao B M L. Na-TiS2 battery - analysis[J]. Journal of the Electrochemical Society, 1978, 125: C471-C471.
[44] Sahu T S, Mitra S. Exfoliated MoS2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery[J]. Scientific Reports, 2015, 5: 12571.
[45] Kim T B, Jung W H, Ryu H S, et al. Electrochemical characteristics of Na/FeS2 battery by mechanical alloying[J]. Journal of Alloys and Compounds, 2008, 449: 304-307.
[46] Kim J S, Ahn H J, Ryu H S, et al. The discharge properties of Na/Ni3S2 cell at ambient temperature[J]. Journal of Power Sources, 2008, 178: 852-856.
[47] Wang S, Yuan S, Yin Y B, et al. Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries[J]. Particle & Particle Systems Characterization, 2016, DOI: 10.1002/ppsc.201500227.
[48] Liu Y L, Xu Y H, Han X G, et al. Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes[J]. Nano Letters, 2012, 12(11): 5664-5668.
[49] Liu Y, Zhang B H, Yang Y Q, et al. Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(43): 13582-13587.
[50] Yuan S, Wang S, Li L, et al. Integrating 3D flower-like hierarchical Cu2NiSnS4 with reduced graphene oxide as advanced anode materials for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9178-9184.
[51] Liu H K, Wang G X, Guo Z P, et al. Nanomaterials for lithium-ion rechargeable batteries[J]. Journal of Nanoscience and Nanotechnology, 2006, 6: 1-15.
[52] Zhao L, Zhao J, Hu Y S, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for Low-cost room-temperature sodium-ion battery[J]. Advanced Energy Materials, 2012, 2(8): 962-965.
[53] Wang H G, Yuan S, Si Z J, et al. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries[J]. Energy & Environmental Science, 2015, 8(11): 3160-3165. |