电化学(中英文) ›› 2021, Vol. 27 ›› Issue (6): 595-604. doi: 10.13208/j.electrochem.201208
收稿日期:
2020-12-08
修回日期:
2020-12-29
出版日期:
2021-12-28
发布日期:
2021-01-11
通讯作者:
隋升
E-mail:ssui@sjtu.edu.cn
基金资助:
Received:
2020-12-08
Revised:
2020-12-29
Published:
2021-12-28
Online:
2021-01-11
Contact:
Sheng Sui
E-mail:ssui@sjtu.edu.cn
摘要:
采用CCS法(catalyst coated substrate)构建铂纳米颗粒(Pt-NPs)和铂纳米线(Pt-NWs)双层催化层结构,分析其对单电池电化学性能的影响。对于富铂/贫铂双层铂纳米颗粒结构,靠近质子交换膜侧的富铂层中致密的铂颗粒结构能促进ORR速率,而靠近气体扩散层一侧的具有更高的孔隙率和平均孔尺寸的贫铂层,有利于反应气体的传输和扩散,当贫富铂层铂载量比为1:2时,单电池测试表现出最优性能,在0.6 V时的电流密度达到了1.05 A·cm-2,峰值功率密度为0.69 W·cm-2,较常规单层催化层结构提升了21%。在以Pt-NPs作为基底层时生长Pt-NWs时,得到了梯度分布的双层结构。铂颗粒的存在促进了铂前驱体的还原,并为新形成的铂原子提供了沉积位置。在Pt-NPs基底上生长的Pt-NWs具有更均匀的分布以及更致密的绒毛结构,并且自然形成了一种梯度分布。优化后的Pt-NWs催化层在0.6 V时的电流密度提高了21%。含有双层催化层结构的膜电极具有更高的催化剂利用率,对阴极催化层结构的优化和制备提供了新思路。
王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604.
Rui-Qing Wang, Sheng Sui. Structure Analysis of PEMFC Cathode Catalyst Layer[J]. Journal of Electrochemistry, 2021, 27(6): 595-604.
表1
MEA样品参数
MEA No. | Pt poor layer | Pt rich layer | ||||
---|---|---|---|---|---|---|
Pt loading/(mg·cm-2) | Pt content | Method | Pt loading/(mg·cm-2) | Pt content | Method | |
MEA#1 | 0.2 | 40% | Pt-NPs | - | - | - |
MEA#2 | 0.2 | 67% | Pt-NWs | - | - | - |
MEA#3 | 0.05 | 40% | Pt-NPs | 0.15 | 60% | Pt-NPs |
MEA#4 | 0.1 | 40% | Pt-NPs | 0.1 | 60% | Pt-NPs |
MEA#5 | 0.15 | 40% | Pt-NPs | 0.05 | 60% | Pt-NPs |
MEA#6 | 0.07 | 40% | Pt-NPs | 0.13 | 60% | Pt-NPs |
MEA#7 | 0.04 | 40% | Pt-NPs | 0.16 | 60% | Pt-NPs |
MEA#8 | 0.07 | 58% | Pt-NWs | 0.13 | 72% | Pt-NWs |
MEA#9 | 0.05 | 40% | Pt-NPs | 0.15 | 75% | Pt-NWs |
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475 URL |
[2] |
Wang G J, Yu Y, Liu H, Gong C L, Wen S, Wang X H, Tu Z K. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review[J]. Fuel Process. Technol., 2018, 179: 203-228.
doi: 10.1016/j.fuproc.2018.06.013 URL |
[3] | Bao B(鲍冰), Liu F(刘锋), Duan X(段骁). Review on progress of membrane electrode assembly in proton-exchange membrane fuel cells[J]. Precious Me.(贵金属), 2019, 40(2): 73-82. |
[4] |
Prasanna M, Cho E A, Lim T H, Oh I H. Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells[J]. Electrochim. Acta, 2008, 53(16): 5434-5441.
doi: 10.1016/j.electacta.2008.02.068 URL |
[5] |
Alaefour I E, Li X G, Hamdullahpur F. Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells[J]. Appl. Energy, 2019, 255: 113802.
doi: 10.1016/j.apenergy.2019.113802 URL |
[6] |
Hwang D S, Park C H, Yi S C, Lee Y M. Optimal catalyst layer structure of polymer electrolyte membrane fuel cell[J]. Int. J. Hydrog. Energy, 2011, 36(16): 9876-9885.
doi: 10.1016/j.ijhydene.2011.05.073 URL |
[7] | Gao Y Y(高燕燕), Hou M(侯明), Jiang Y Y(姜永燚), Liang D(梁栋), Ai J(艾军), Zheng L M(郑利民). Chemical stability investigations of catalyst layer in PEMFC[J]. J. Electrochem.(电化学), 2018, 24(3): 227-234. |
[8] |
Rao R M, Rengaswamy R. Optimization study of an agglomerate model for platinum reduction and performance in PEM fuel cell cathode[J]. Chem. Eng. Res. Des., 2006, 84(10): 952-964.
doi: 10.1205/cherd06018 URL |
[9] |
Secanell M, Karan K, Suleman A, Djilali N. Multi-variable optimization of PEMFC cathodes using an agglomerate model[J]. Electrochim. Acta, 2007, 52(22): 6318-6337.
doi: 10.1016/j.electacta.2007.04.028 URL |
[10] | Du C Y(杜春雨), Cheng X Q(程新群), Yin G P(尹鸽平). Influence of structural parameters on ordered cathode catalyst layer in proton exchange membrane fuel cells[J]. CIESC Journal(化工学报), 2007, 58(1): 212-216. |
[11] |
Zheng J S, Dai N N, Zhu S Y, Gao Y, Ye L C, Ma J X, Zheng J P. Membrane electrode assembly based on buckypaper with gradient distribution of platinum, proton conductor and electrode porosity[J]. J. Alloy. Compd., 2018, 769: 471-477.
doi: 10.1016/j.jallcom.2018.07.271 URL |
[12] |
Ye L C, Gao Y, Zhu S Y, Zheng J S, Li P, Zheng J P. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. Int. J. Hydrogen Energy, 2017, 42(10): 7241-7245.
doi: 10.1016/j.ijhydene.2016.11.002 URL |
[13] | Shu Q Z(舒清柱), Ding W Y(丁伟元), Zhao H(赵红). Study of a novel gas diffusion layer based on carbon fiber/carbon nanotubes[J]. J. Dalian Jiaotong Univ.(大连交通大学学报), 2020, 41(5): 71-77. |
[14] |
Shahgaldi S, Ozden A, Li X G, Hamdullahpur F. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells[J]. Energ. Convers. Manage., 2018, 171: 1476-1486.
doi: 10.1016/j.enconman.2018.06.078 URL |
[15] |
Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chem. Rev., 2014, 114(15): 7610-7630.
doi: 10.1021/cr400544s URL |
[16] | Deng R, Xia Z, Sun R, Deng R Y, Xia Z X, Sun R L, Wang S L, Sun G Q. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. J. Energy Chem., 2020, 29(4): 33-39. |
[17] |
Lu Y, Du S, Steinberger-Wilckens R. Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells[J]. Appl. Catal. B-Environ., 2015, 164: 389-395.
doi: 10.1016/j.apcatb.2014.09.040 URL |
[18] |
Li B, Yan Z Y, Higgins D C, Yang D J, Chen Z W, Ma J X. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells[J]. J. Power Sources, 2014, 262: 488-493.
doi: 10.1016/j.jpowsour.2014.04.004 URL |
[19] |
Meng H, Xie F Y, Chen J, Sun S H, Shen P K. Morphology controllable growth of Pt nanoparticles/nanowires on carbon powders and its application as novel electro-catalyst for methanol oxidation[J]. Nanoscale, 2011, 3(12): 5041-5048.
doi: 10.1039/c1nr10947b pmid: 22048635 |
[20] |
Sun S H, Yang D Q, Villers D, Zhang G X, Sacher E, Dodelet J P. Template- and surfactant-free room temperature synjournal of self-assembled 3D Pt nanoflowers from single-crystal nanowires[J]. Adv. Mater., 2008, 20(3): 571-574.
doi: 10.1002/(ISSN)1521-4095 URL |
[21] |
Li M F, Zhao Z P, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q H, Gu L, Merinov B V, Lin Z Y, Zhu E B, Yu T, Jia Q Y, Guo J H, Zhang L, Goddard W A, Huang Y, Duan X F. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419.
doi: 10.1126/science.aaf9050 URL |
[22] |
Yao X Y, Su K H, Sui S, Mao L W, He A, Zhang J L, Du S F. A novel catalyst layer with carbon matrix for Pt nanowire growth in proton exchange membrane fuel cells (PEMFCs)[J]. Int. J. Hydrogen Energy, 2013, 38(28): 12374-12378.
doi: 10.1016/j.ijhydene.2013.07.037 URL |
[23] |
Wang C, Cheng X J, Lu J B, Shen S Y, Yan X H, Yin J W, Wei G H, Zhang J L. The Experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells[J]. J. Phys. Chem. Lett., 2017, 8(23): 5848-5852.
doi: 10.1021/acs.jpclett.7b02580 URL |
[24] | Randall C R, DeCaluwe S C. Physically based modeling of PEMFC cathode catalyst layers: effective microstructure and ionomer structure-property relationship impacts[J]. J. Electrochem. En. Conv. Stor., 2020, 17(4): 1-14. |
[25] |
Mohanta P K, Ripa M S, Regnet F, Joerissen L. Impact of membrane types and catalyst layers composition on performance of polymer electrolyte membrane fuel cells[J]. Chemistryopen, 2020, 9(5): 607-615.
doi: 10.1002/open.v9.5 URL |
[26] |
Huang C P, Odetola C B, Rodgers M. Nanoparticle seeded pulse electrodeposition for preparing high performance Pt/C electrocatalysts[J]. Appl. Catal. A - Gen., 2015, 499: 55-65.
doi: 10.1016/j.apcata.2015.03.043 URL |
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[3] | 杜立群, 温义奎, 关发龙, 翟科, 叶作彦, 王超. 移动阴极式掩膜电解加工微沟槽阵列均匀性研究[J]. 电化学(中英文), 2021, 27(6): 658-670. |
[4] | 董文霞, 温广明, 刘斌, 李忠平. 基于Zr-MOFs光电化学传感用于同型半胱氨酸的检测[J]. 电化学(中英文), 2021, 27(6): 681-688. |
[5] | 魏荣强, 李世安, 刘艺辉, 杨治, 沈秋婉, 杨国刚. 流道与肋宽比对气体扩散层性能影响的数值研究[J]. 电化学(中英文), 2021, 27(5): 579-585. |
[6] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[7] | 邓博文, 尹华意, 汪的华. CO2高效资源化利用的高温熔盐电化学技术研究[J]. 电化学(中英文), 2020, 26(5): 628-638. |
[8] | 张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572. |
[9] | 毛庆, 李冰玉, 景维云, 赵健, 刘松, 黄延强, 杜兆龙. 膜电极构型CO2还原电解单池的稳定性研究[J]. 电化学(中英文), 2020, 26(3): 359-369. |
[10] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
[11] | 鲍晓囡, 张广君, 王绍荣. 阴极支撑型固体氧化物燃料电池的制备与测试[J]. 电化学(中英文), 2020, 26(2): 190-197. |
[12] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[13] | 郭子英, 李作鹏, 李 江, 赵建国, 冯 锋. 电沉积铋膜电极差示脉冲溶出伏安法测定盐酸左氧氟沙星[J]. 电化学(中英文), 2019, 25(6): 792-801. |
[14] | 饶妍,李赏,周芬,田甜,钟青,宛朝辉,谭金婷,潘牧. 低铂膜电极结构优化途径[J]. 电化学(中英文), 2018, 24(6): 677-686. |
[15] | 刘勇,丁涵,司德春,彭杰,张剑波. 静电纺丝制备质子交换膜燃料电池催化剂层综述[J]. 电化学(中英文), 2018, 24(6): 639-654. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||