电化学(中英文) ›› 2021, Vol. 27 ›› Issue (6): 614-623. doi: 10.13208/j.electrochem.201210
赵桂香1, Wail Hafiz Zaki Ahmed1, 朱福良1,2,*()
收稿日期:
2020-12-10
修回日期:
2021-02-02
出版日期:
2021-12-28
发布日期:
2021-02-18
通讯作者:
朱福良
E-mail:chzfl@126.com
基金资助:
Gui-Xiang Zhao1, Wail Hafiz Zaki Ahmed1, Fu-Liang Zhu1,2,*()
Received:
2020-12-10
Revised:
2021-02-02
Published:
2021-12-28
Online:
2021-02-18
Contact:
Fu-Liang Zhu
E-mail:chzfl@126.com
摘要:
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。
赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623.
Gui-Xiang Zhao, Wail Hafiz Zaki Ahmed, Fu-Liang Zhu. Nitrogen-Sulfur Co-Doped Porous Carbon Preparation and Its Application in Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2021, 27(6): 614-623.
[1] |
Rehman S, Gu X X, Khan K, Mahmood N, Yang W L, Huang X X, Guo S, Hou Y L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries[J]. Adv. Energy Mater., 2016, 6(12): 1502518.
doi: 10.1002/aenm.201502518 URL |
[2] |
Yang W W, Xiao J W, Ma Y, Cui S Q, Zhang P, Zhai P B, Meng L J, Wang X G, Wei Y, Du Z G, Li B X, Sun Z B, Yang S B, Zhang Q F, Gong Y J. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(7): 1803137.
doi: 10.1002/aenm.v9.7 URL |
[3] |
Yu M P, Ma J S, Xie M, Song H Q, Tian F Y, Xu S S, Zhou Y, Li B, Wu D, Qiu H, Wang R M. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(11): 1602347.
doi: 10.1002/aenm.v7.11 URL |
[4] | Chen S X, Luo J H, Li N Y, Han X X, Wang J, Deng Q, Zeng Z L, Deng S G. Multifunctional LDH/Co9S8 hetero-structure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan[J]. Energy Stor. Mater., 2020, 30: 187-195. |
[5] |
Guo D Y, Wei H F, Chen X A, Liu M L, Ding F, Yang Z, Yang Y, Wang S, Yang K Q, Huang S M. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(34): 18193-18206
doi: 10.1039/C7TA04728B URL |
[6] |
Cheng X B, Huang J Q, Zhang Q, Peng H J, Zhao M Q, Wei F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries[J]. Nano Energy, 2014, 4: 65-72.
doi: 10.1016/j.nanoen.2013.12.013 URL |
[7] |
Chen M F, Jiang S X, Huang C, Wang X Y, Cai S Y, Xiang K X, Zhang Y P, Xue J X. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries[J]. ChemSusChem, 2017, 10(8): 1803-1812.
doi: 10.1002/cssc.201700050 URL |
[8] |
Gan R Y, Yang N, Dong Q, Fu N, Wu R, Li C P, Liao Q, Li J, Wei Z D. Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability[J]. J. Mater. Chem. A, 2020, 8(15): 7253-7260.
doi: 10.1039/D0TA02374D URL |
[9] |
Chae C, Kim J, Kim J Y, Ji S, Lee S S, Kang Y, Choi Y, Suk J, Jeong S. Room-temperature, ambient-pressure chemical synjournal of amine-functionalized hierarchical carbon-sulfur composites for lithium-sulfur battery cathodes[J]. ACS Appl. Mater. Inter., 2018, 10(5): 4767-4775.
doi: 10.1021/acsami.7b19181 URL |
[10] |
ZhangY J, Liu X L, Wu L, Dong W D, Xia F J, Chen L D, Zhou N, Xia L X, Hu Z Y, Liu J, Mohamed H S H, Yu Li, Zhao Y, Chen Li H, Su B L. Flexible hierarchically PANI/MnO2 porous network with fast channels and extraordinary chemical process for stable fastcharging lithium-sulfur battery[J]. J. Mater. Chem. A, 2020, 8: 2741-2751.
doi: 10.1039/C9TA12135H URL |
[11] |
Abualela S M, Lü X X, Hu Y, Abd-Alla, M D. NiO nano-sheets grown on carbon cloth as mesoporous cathode for High-performance lithium-sulfur battery[J]. Mater. Lett., 2020, 268: 127622.
doi: 10.1016/j.matlet.2020.127622 URL |
[12] |
Yu F Q, Zhou H, Shen Q. Modification of cobalt-containing MOF-derived mesoporous carbon as an effective sulfur-loading host for rechargeable lithium-sulfur batteries[J]. J. Alloys Compd., 2019, 772: 843-851.
doi: 10.1016/j.jallcom.2018.09.103 URL |
[13] |
Chen T, Cheng B R, Zhu G Y, Chen R P, Hu Y, Ma L B, Lü H L, Wang Y R, Liang J, Tie Z X, Jin Z, Liu J. Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries[J]. Nano Lett., 2016, 17(1): 437-444.
doi: 10.1021/acs.nanolett.6b04433 URL |
[14] |
Hu K, Wen J, Yan W Q, Zhu Y S, Zhang Y, Yu N F, Wu Y P. A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li-S batteries[J]. Sustain. Energy Fuels, 2020, 4(8): 4264-4272.
doi: 10.1039/D0SE00620C URL |
[15] | Wu K(吴凯). Preparation and process optimization of cathode materials for lithium-sulfur batteries[J]. J. Electrochem.(电化学), 2020, 26(6): 825-833. |
[16] |
Cui Z, He S A, Liu Q, Zou R J. Multifunctional NiCo2O4 nanosheet-assembled hollow nanoflowers as a highly eff-icient sulfur host for lithium-sulfur batteries[J]. Dalton Trans., 2020, 49(20): 6876-6883.
doi: 10.1039/C9DT04936C URL |
[17] |
Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. Iron single atom catalyst anchored on nitrogen-rich MOF derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3421-3430.
doi: 10.1039/C9TA11680J URL |
[18] |
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
doi: 10.1021/jacs.8b12973 URL |
[19] |
Li Z, Yan J, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. A Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9): 9295-9303.
doi: 10.1021/nn503220h URL |
[20] |
Liu Y Z, Li G R, Chen Z W, Peng X S. CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery[J]. J. Mater. Chem. A, 2017, 5(20): 9775-9784.
doi: 10.1039/C7TA01526G URL |
[21] |
Lei T Y, Chen W, Huang J W, Yan C Y, Sun H X, Wang C, Zhang W L, Li Y R, Xiong J. Multi-Functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(4): 1601843.
doi: 10.1002/aenm.201601843 URL |
[22] |
Xu W, Pang H M, Zhou H L, Jian Z X, Hu R M, Xing Y L, Zhang S C. Lychee-like TiO2@TiN dual-function com-posite material for lithium-sulfur batteries[J]. RSC Adv., 2020, 10(5): 2670-2676.
doi: 10.1039/C9RA09534A URL |
[23] |
Feng X H, Wang Q, Li R R, Li H. CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries[J]. Appl. Surf. Sci., 2019, 478: 341-346.
doi: 10.1016/j.apsusc.2019.01.145 URL |
[24] | Shi J N, Kang Q, Mi Y, Xiao Q Q. Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li-S batteries[J]. Electrochim. Acta, 2019, 19: 31720-31727. |
[25] |
Liu J T, Xiao S H, Zhang Z Y, Chen Y, Xiang Y, Liu X Q, Chen J S, Chen P. Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery[J]. Nanoscale, 2020, 12(8): 5114-5124.
doi: 10.1039/C9NR10419D URL |
[26] |
Cai D, Liu B K, Zhu D H, Chen D, Lu M J, Cao J M, Wang Y H, Huang W H, Shao Y, Tu H R, Han W. Ultrafine Co3Se4 nanoparticles in nitrogen-doped 3D carbon matrix for high-stable and long-cycle-life lithium sulfur batteries[J]. Adv. Energy Mater., 2020, 10(19): 1904273.
doi: 10.1002/aenm.v10.19 URL |
[27] |
Huang M, Yang J Y, Xi B J, Mi K, Feng Z Y, Liu J, Feng J K, Qian Y T, Xiong S L. Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid[J]. Sci. China Mater., 2018, 62(4): 455-464.
doi: 10.1007/s40843-018-9331-x URL |
[28] |
Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Manipulating the redox kinetics of Li-S chemistry by porous hollow cobalt - B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries[J]. Carbon, 2019, 149: 564-571.
doi: 10.1016/j.carbon.2019.04.022 URL |
[29] |
Li J R, Zhou J, Wang T, Chen X, Zhang Y X, Wan Q, Zhu J. Covalent sulfur embedding in inherent N,P co-doped biological carbon for ultrastable and high rate lithium-sulfur batteries[J]. Nanoscale, 2020, 12(16): 8991-8996.
doi: 10.1039/D0NR01103G URL |
[30] |
Hu C J, Chang Y N, Chen R D, Yang J J, Xie T H, Chang Z, Zhang G X, Liu W, Sun X M. Polyvinylchloride-derived N, S co-doped carbon as an efficient sulfur host for high-performance Li-S batteries[J]. RSC Adv., 2018, 8(66): 37811-37816.
doi: 10.1039/C8RA07885H URL |
[31] |
Jiao S, Ding T Y, Zhai R, Wu Y P, Chen S, Wei W. Effective accommodation and conversion of polysulfides using organic-inorganic hybrid frameworks for long-life lithium-sulfur batteries[J]. Nanoscale, 2020, 12(25): 13377-13387.
doi: 10.1039/d0nr01239d pmid: 32347276 |
[32] |
Gu W T, Sevilla M, Magasinski A, Fuertes A B, Yushin G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy Environ. Sci., 2013, 6(8): 2465-2476.
doi: 10.1039/c3ee41182f URL |
[33] |
Du M Q, Meng Y S, Duan C Y, Wang C, Zhu F L, Zhang Y. Nitrogen-sulfur co-doped porous carbon prepared using ionic liquids as a dual heteroatom source and their application for Li-ion batteries[J]. J. Mater. Sci. - Mater. Electron., 2018, 29(21): 18179-18186.
doi: 10.1007/s10854-018-9930-2 URL |
[34] |
Zhang H, Zhao W Q, Zou M C, Wang Y S, Chen Y J, Xu L, Wu H S, Cao A Y. 3D, Mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(19): 1800013.
doi: 10.1002/aenm.v8.19 URL |
[35] |
Zeng L C, Pan F S, Li W H, Jiang Y, Zhong X W, Yu Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode[J]. Nanoscale, 2014, 6(16): 9579-9607.
doi: 10.1039/C4NR02498B URL |
[36] |
Zhang Q F, Qiao Z S, Cao X R, Qu B H, Yuan J, Fan T E, Zheng H F, Cui J Q, Wu S Q, Xie Q S, Peng D L. Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries[J]. Nanoscale Horiz., 2020, 5(4): 720-729.
doi: 10.1039/C9NH00663J URL |
[37] |
Jin J, Cai W L, Cai J S, Shao Y L, Song Y Z, Xia Z, Zhang Q, Sun J Y. MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3027-3034.
doi: 10.1039/C9TA13046B URL |
[38] | Meng Q H(孟全华), Deng W W(邓雯雯), Li C M(李长明). Facile synjournal of nitrogen-doped graphene-like active carbon materials for high performance lithium-sulfur battery[J]. J. Electrochem(电化学), 2020, 26(5): 740-749. |
[39] |
Liu J P, Li Z, Jia B B, Zhu J C, Zhu W L, Li J P, Pan H, Zheng B W, Chen L Y, Pezzotti G, Zhu J L. A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(13): 6303-6310.
doi: 10.1039/C9TA14240A URL |
[40] |
Li S Q, Mou T, Ren G F, Warzywoda J, Wang B, Fan Z Y. Confining sulfur species in cathodes of lithium-sulfur batteries: insight into nonpolar and polar matrix surfaces[J]. ACS Energy Lett., 2016, 1(2): 481-489.
doi: 10.1021/acsenergylett.6b00182 URL |
[41] |
Lee J Y, Park G D, Choia J H, Kang Y C. Structural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li-S batteries[J]. Nanoscale, 2020, 12(3): 2142-2153.
doi: 10.1039/C9NR09807K URL |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[6] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[7] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[8] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[9] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[10] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[11] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[12] | 范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387. |
[13] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[14] | 魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730. |
[15] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||