[1] Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews, 2008, 108(7): 2506-2553.
[2] Li L L, Chen Y, Zhu J J. Recent advances in electrochemiluminescence analysis[J]. Analytical Chemistry, 2017, 89(1): 358-371.
[3] Wang Y F(王艳凤), Luo D(罗荻), Shan D L(陕多亮), et al. Cathodic electrochemiluminescence of meso-tetra(4-sulfophenyl)porphyrin/potassium peroxydisulfate system[J].
Journal of Electrochemistry (电化学), 2017, 23(3): 307-315.
[4] Zhou Z Y(周镇宇), Xu L R(许林茹), Su B(苏彬). Electrochemiluminescence imaging focusing: Array analysis and visualization of latent fingerprints[J]. Journal of Electrochemistry(电化学), 2014, 20(6): 506-514.
[5] Wallace W L, Bard A J. Electrogenerated chemiluminescence. 35. Temperature dependence of the ECL efficiency of Ru(bpy)32+ in acetonitrile and evidence for very high excited state yields from electron transfer reactions[J]. Journal of Physical Chemistry, 1979, 83(10): 1350-1357.
[6] Wang X F, Zhou Y, Xu J J, et al. Signal-on electrochemiluminescence biosensors based on CdS-Carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine[J]. Advanced Functional Materials, 2009, 19(9): 1444-1450.
[7] Lin Z Y, Chen J H, Chen G N. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode[J]. Electrochimica Acta, 2008, 53(5): 2396-
2401.
[8] Wang H Y, Zhang F Q, Tan Z A, et al. Greatly enhanced electrochemiluminescence of CdS nanocrystals upon heating in the presence of ammonia[J]. Electrochemistry Communications, 2010, 12(5): 650-652.
[9] Li H D, Sentic M, Ravaine V, et al. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films[J]. Physical Chemistry Chemical Physics, 2016, 18(48): 32697-32702.
[10] Harima Y, Aoyagui S. Electrode potential relaxation following a rapid change of temperature[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 69(3): 419-422.
[11] Ishikawa T, Okamoto G. Potentiostatic response of passive metals to the rate of temperature change[J]. Electrochimica Acta, 1964, 9(10): 1259-1268.
[12] Flechsig G U, Korbout O, Hocevar S B, et al. Electrically heated bismuth-film electrode for voltammetric stripping measurements of trace metals[J]. Electroanalysis, 2002, 14(3): 192-196.
[13] Lau C, Flechsig G U, Gründler P, et al. Electrochemistry of nicotinamide adenine dinucleotide (reduced) at heated platinum electrodes[J]. Analytica Chimica Acta, 2005, 554(1): 74-78.
[14] Zhang J J, Liu Y, Hu L H, et al. “Proof-of-principle” concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode[J]. Chemical Communications, 2011, 47(23): 6551-6553.
[15] Shi J J, He T T, Jiang F, et al. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-
metal labels for rapid detection of MMP-9 and IL-6[J]. Biosensors and Bioelectronics, 2014, 55: 51-56.
[16] Wei H, Sun J J, Guo L, et al. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode[J]. Chemical Communications, 2009, 20: 2842-2844.
[17] Wu S H, Zhang B, Wang F F, et al. Heating enhanced sensitive and selective electrochemical detection of Hg2+ based on T-Hg2+-T structure and exonuclease III-assisted target recycling amplification strategy at heated gold disk electrode[J]. Biosensors and Bioelectronics, 2018, 104: 145-151.
[18] Jasinski M, Kirbs A, Schmehl M, et al. Heated mercury film electrode for anodic stripping voltammetry[J]. Electrochemistry Communications, 1999, 1(1): 26-28.
[19] Compton R G, Coles B A, Marken F. Microwave activation of electrochemical processes at microelectrodes[J]. Chemical Communications, 1998, 23: 2595-2596.
[20] Ke J H, Tseng H J, Hsu C T, et al. Flow injection analysis of ascorbic acid based on its thermoelectrochemistry at disposable screen-printed carbon electrodes[J]. Sensors and Actuators B: Chemical, 2008, 130(2): 614-619.
[21] Qiu F L, Compton R G, Coles B A, et al. Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation[J]. Journal of Electroanalytical Chemistry, 2000, 492(2): 150-155.
[22] Gründler P. Theory and practice of sensors with hot-wire electrodes[J]. Fresenius Journal of Analytical Chemistry, 1998, 362(2): 180-183.
[23] Qu X L(瞿晓龙), Zhang Z F(张正富). Application of microwave heating in preparation of lithium batteries cathode materials[J]. Journal of Materials Science & Engineering (材料科学与工程学报), 2015, 33(5): 776-780.
[24] Compton R G, A. Coles B, Marken F. Microwave activation of electrochemical processes at microelectrodes[J]. Chemical Communications, 1998, 23: 2595-2596.
[25] Akkermans R P, Roberts S L, Marken F, et al. Methylene green voltammetry in aqueous solution: Studies using thermal, microwave, laser, or ultrasonic activation at platinum electrodes[J]. The Journal of Physical Chemistry B, 1999, 103(45): 9987-9995.
[26] Tsai Y C, Coles B A, Compton R G, et al. Microwave activation of electrochemical processes: Enhanced electrodehalogenation in organic solvent media[J]. Journal of the American Chemical Society, 2002, 124(33): 9784-9788.
[27] Kumar Sur U, Marken F, Coles B A, et al. Microwave activation in ionic liquids induces high temperature-high speed electrochemical processes[J]. Chemical Communications, 2004, 24: 2816-2817.
[28] Shafir A. Laser beam heating method and apparatus: U.S. Patent 5,298,719[P]. 1994-3-29.
[29] Valdes J L, Miller B. Thermal modulation of rotating-disk electrodes-steady-state response[J]. Journal of Physical Chemistry, 1988, 92(2): 525-532.
[30] Hinoue T, Ikeda E, Watariguchi S, et al. Thermal modulation voltammetry with laser heating at an aqueous|nitrobenzene solution microinterface: Determination of the standard entropy changes of transfer for tetraalkylammonium ions[J]. Analytical Chemistry, 2007, 79(1): 291-298.
[31] Hartshorn L. Radio-frequency heating[M]. George Allen & Unwin Ltd., 1949.
[32] Li Y L(李玉林), Jiao Y(焦阳), Wang Y F(王易芬). Application of radio frequency heating in food industry[J]. Food & Machinery (食品与机械), 2017, 33(12): 197-202.
[33] Gründler P, Degenring D. Temperature calculation for pulse-heated hot-wire electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 512(1/2): 74-82.
[34] Gründler P, Flechsig G U. Principles and analytical applications of heated electrodes[J]. Microchimica Acta, 2006, 154(3): 175-189.
[35] Gründler P, Kirbs A, Zerihun T. Hot-wire electrodes: Voltammetry above the boiling point[J]. Analyst, 1996, 121(12): 1805-1810.
[36] Zerihun T, Gründler P. Electrically heated cylindrical microelectrodes. The reduction of dissolved oxygen on Pt[J]. Cheminform, 1996, 27(39): 243-248.
[37] Beckmann A, Schneider A, Gründler P. Electrically heated cylindrical microelectrodes. Electrochemical measurements in THF[J]. Electrochemistry Communications, 1999, 1(1): 46-49.
[38] Gabrielli C, Keddam M, Lizee J F. A temperature perturbation method for electrochemical kinetics investigations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 148(2): 293-297.
[39] Gründler P, Zerihun T, Möller A, et al. A simple method for heating micro electrodes in-situ[J]. Journal of Electroanalytical Chemistry, 1993, 360(1/2): 309-314.
[40] Baranski A S. Hot microelectrodes[J]. Analytical Chemistry, 2002, 74(6): 1294-1301.
[41] Gründler P, Flechsig G U. Deposition and stripping at heated microelectrodes. Arsenic(V) at a gold electrode[J]. Electrochimica Acta, 1998, 43(23): 3451-3458.
[42] Voss T, Gründler P, Brett C, et al. Electrochemical behaviour of cytochrome c at electrically heated microelectrodes[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19(1/2): 127-133.
[43] Walter A, Langschwager F, Marken F, et al. Nanostructured heated gold electrodes for DNA hybridization detection using enzyme labels[J]. Sensors and Actuators B: Chemical, 2016, 233: 502-509.
[44] Wu S H, Tang Y, Chen L, et al. Amplified electrochemical hydrogen peroxide reduction based on hemin/G-quadruplex DNAzyme as electrocatalyst at gold particles modified heated copper disk electrode[J]. Biosensors and Bioelectronics, 2015, 73: 41-46.
[45] Wang J, Gründler P, Flechsig G U, et al. Stripping analysis of nucleic acids at a heated carbon paste electrode[J]. Analytical Chemistry, 2000, 72(16): 3752-3756.
[46] Wang J, Flechsig G U, Erdem A, et al. Label-free DNA hybridization based on coupling of a heated carbon paste electrode with magnetic separations[J]. Electroanalysis, 2004, 16(11): 928-931.
[47] Zhang J J, Liu Y, Hu L H, et al. “Proof-of-principle” concept for ultrasensitive detection of cytokines based on the electrically heated carbon paste electrode[J]. Chemical Communications, 2011, 47(23): 6551-6553.
[48] Jiang F, Zhang J J, Zhang J R, et al. Ultrasensitive immunoassay based on dual signal amplification of the electrically heated carbon electrode and quantum dots functionalized labels for the detection of matrix metalloproteinase-9[J]. Analyst, 2013, 138(7): 1962-1965.
[49] Lou Y B, He T T, Jiang F, et al. A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels[J]. Talanta, 2014, 122: 135-139.
[50] Sun J J, Guo L, Zhang D F, et al. Heated graphite cylinder electrodes[J]. Electrochemistry Communications, 2007, 9(2): 283-288.
[51] Cheng H, Jiang S. Preparation and application of graphene modified heated glassy carbon electrode[C]//2nd International Conference on Civil, Materials and Environmental Sciences. Atlantis Press, 2015.
[52] Wu S H, Nie F H, Chen Q Z, et al. Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating[J]. Analytica Chimica Acta, 2011, 687(1): 43-49.
[53] Kale G M. Solid-state mixed-potential sensor employing tin-doped indium oxide sensing electrode and scandium oxide-stabilised zirconia electrolyte[J]. Advanced Powder Technology, 2009, 20(5): 426-431.
[54] Yin Z, Zhang J, Jiang L P, et al. Thermosensitive behavior of poly(N-isopropylacrylamide) and release of incorporated hemoglobin[J]. The Journal of Physical Chemistry C, 2009, 113(36): 16104-16109.
[55] Chen Y T, Jiang Y Y, Lin Z Y, et al. Fabrication of an electrically heated indium-tin-oxide electrode for electrochemiluminescent detection system[J]. Analyst, 2009, 134
(4): 731-737.
[56] Lin Z Y, Sun J J, Chen J H, et al. A new electrochemiluminescent detection system equipped with an electrically controlled heating cylindrical microelectrode[J]. Analytica Chimica Acta, 2006, 564(2): 226-230.
[57] Nasir M, Nawaz M H, Latif U, et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays[J]. Microchimica Acta, 2017, 184(2): 323-342.
[58] Yang H F, Zhang Y S, Qiu B, et al. The electrochemiluminescent behavior of nickel phthalocyanine (NiTSPc)/H2O2 system on a heated ITO electrode[J]. Chinese Chemical Letters, 2012, 23(6): 711-714.
[59] Ye R H, Chen X P, Qiu B, et al. Electrochemiluminescence behavior of Ru(bpy)32+/carbofuran system on an electrically heated microelectrode chip[J]. Chinese Journal of Chemistry, 2011, 29(10): 2148-2152.
[60] Lin Z Y, Sun J J, Chen J H, et al. Enhanced electrochemiluminescent of lucigenin at an electrically heated cylindrical microelectrode[J]. Electrochemistry Communications, 2007, 9(2): 269-274.
[61] Lin Z, Sun J, Chen J, et al. The electrochemiluminescent behavior of luminol on an electrically heating controlled microelectrode at cathodic potential[J]. Electrochimica Acta, 2007, 53(4): 1708-1712.
[62] Lin Z, Sun J, Chen J, et al. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase[J]. Analytical Chemistry, 2008, 80(8): 2826-2831.
[63] Chen Y T, Jiang Y Y, Lin Z Y, et al. An electrochemiluminescent detector based on multi-wall-carbon-nanotube/Nafion/Ru(bpy)32+ composite film modified heated electrode[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(4): 2303-2309.
[64] Chen L C, Chi Y W, Zheng X X, et al. Heated indium tin oxide cell for studying ionic liquid-mediated electrochemiluminescence[J]. Analytical Chemistry, 2009, 81(6): 2394-2398.
[65] Chen Y T, Chen X, Lin Z Y, et al. An electrically heated ionic-liquid/multi-wall carbon nanotube composite electrode and its application to electrochemiluminescent detection of ascorbic acid[J]. Electrochemistry Communications, 2009, 11(6): 1142-1145.
[66] Lin Z Y, Chen X P, Chen H Q, et al. Electrochemiluminescent behavior of N6-isopentenyl-adenine/Ru(bpy)32+ system on an electrically heated ionic liquid/carbon paste electrode[J]. Electrochemistry Communications, 2009, 11(10): 2056-2059.
[67] Chen Y T, Li Y X, Jiang L Q, et al. Fabrication of a heated electrode modified with a thiol-functionalized ionic liquid for electrochemical/electrochemiluminescence sensors[J]. RSC Advances, 2016, 6(46): 39955-39961.
[68] Chen Y T, Qiu B, Jiang Y Y, et al. Detection of hypoxanthine based on the electrochemiluminescent of 6-(4-methoxyphenyl)-2-methylimidazo[1, 2-a] pyrazin-3(7H)-one on the electrically heated indium-tin-oxide electrode[J]. Electrochemistry Communications, 2009, 11(11): 2093-2096.
[69] Lin Z Y, Wang W Z, Jiang Y Y, et al. Detection of N-6-methyladenosine in urine samples by electrochemiluminescence using a heated ITO electrode[J]. Electrochimica Acta, 2010, 56(2): 644-648.
[70] Jacobsen M, Flechsig G U. Hybridization detection of osmium tetroxide bipyridine-labeled DNA and RNA on heated gold wire electrodes[J]. Electroanalysis, 2013, 25(2): 373-379.
[71] Flechsig G U, Peter J, Hartwich G, et al. DNA hybridization detection at heated electrodes[J]. Langmuir, 2005, 21(17): 7848-7853.
[72] Zhang H F, Zhuo Z S, Chen L J, et al. Enhanced performance of a hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ochratoxin A using an electrically heated indium tin oxide electrode[J]. Electrochemistry Communications, 2018, 88: 75-78.
[73] Chen Y, Lin Z, Chen J, et al. New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)32+/multi-wall-carbon-
nanotube paste electrode[J]. Journal of Chromatography A, 2007, 1172(1): 84-91.
[74] Chen Y T, Lin Z Y, Sun J J, et al. A new electrochemiluminescent detection system equipped with an electrically heated carbon paste electrode for CE[J]. Electrophoresis, 2007, 28(18): 3250-3259.
|