[1] Hu R(胡仁), Piao C H(朴春晖), Lin C J(林昌健), et al. Current statuses and prospects of bioeletrochemical instruments[J]. Journal of Electrochemistry(电化学), 2013, 19 (2): 97-102.
[2] Zhang M N, Yu P, Mao L Q. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry[J]. Accounts of Chemical Research, 2012,45(4): 533-543.
[3] Zhang L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Accounts of Chemical Research, 2018, 51(3): 688-696.
[4] Liu L, Zhao F, Tian Y, et al. An electrochemical biosensor with dual signal outputs: toward simultaneous quantification of pH and O2 in the brain upon ischemia and in a tumor during cancer starvation therapy[J]. Angewandte ChemieInternational Edition, 2017, 56(35): 10471-10475.
[5] Dong H, Zhang L M, Liu W, et al. Label-free electrochemical biosensor for monitoring of chloride ion in an animal model of Alzhemer爷s disease[J]. ACS Chemical Neuroscience,2017, 8(2): 339-346.
[6] Luo Y P, Zhang L M, Liu W, et al. A single biosensor for evaluating the levels of copper ion and L-cysteine in a live rat brain with Alzheimer's disease [J].Angewandte ChemieInternational Edition, 54(47): 14053-14056.
[7] Guan L H(关利浩), Wang C(王超), Zhang W(张望), et al. A facile strategy for two-step fabrication of gold nanoelectrode for in vivo dopamine detection[J]. Journal of Electrochemistry(电化学), 2019, 25(2): DOI: 10.13208/j.electrochem.181042.
[8] Robinson D L, Hermans A, Seipel A T, et al. Monitoring rapid chemical communication in the brain[J]. Chemical Reviews, 2008, 108(7): 2554-2584.
[9] Wilson G S, Gifford R. Biosensors for real-time in vivo measurement[J]. Biosensors&Bioelectronics, 2005, 20(12):2388-2403.
[10] Yoshimi K. Temporal differentiation of pH-dependent capacitive current from dopamine[J]. Analytical Chemistry, 2014, 86(17): 8576-8584.
[11] Jones S R, Garris P A, Kilts C D, et al. Comparison of dopamine uptake in the basolateral amygdaloid nucleus,caudate-putamen, and nucleus accumbens of the rat [J].Journal of Neurochemistry, 1995, 64(6): 2581-2589.
[12] Jung M C, Shi G Y, Borland L, et al. Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer [J].Analytical Chemistry, 2006, 78(6): 1755-1760.
[13] Shou M S, Ferrario C R, Schultz K N, et al. Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence[J]. Analytical Chemistry,2006, 78(19): 6717-6725.
[14] Hellgren M, Sandberg L, Edholm O. A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study[J].Biophysical Chemistry, 2006, 120(1): 1-9.
[15] Henry D A. Hyponatremia[J]. Annals of InternalMedicine,2015, 163(3): ITC1.
[16] Killilea D W, Ames B N. Magnesium deficiency acceleratescellular senescence in cultured human fibroblasts[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(15): 5768-5773.
[17] Slutsky I, Abumaria N, Wu L J, et al. Enhancement of learning and memory by elevating brain magnesium[J].Neuron, 2010, 65(2): 165-177.
[18] Clapham D E. Calcium signaling[J]. Cell, 1995, 80(2):259-268.
[19] Mattson M P. Calcium and neurodegeneration[J]. Aging Cell, 2007, 6(3): 337-350.
[20] Slutsky I, Sadeghpour S, Li B, et al. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity[J]. Neuron, 2004, 44(5): 835-849.
[21] Slutsky I, Abumaria N, Wu L J, et al. Enhancement of learning and memory by elevating brain magnesium[J].Neuron, 2010, 65(2): 165-177.
[22] Zilberter Y, Zilberter T, Bregestovski P. Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis[J]. Trends in Pharmacological Sciences, 2010, 31 (9): 394-401.
[23] Wyss M T, Jolivet R, Buck A, et al. In vivo evidence for lactate as a neuronal energy source[J]. Journal of Neuroscience,2011, 31(20): 7477-7485.
[24] Wang Z, Liu D, Tian Y, et al. NTA-modified carbon electrode as a general relaying substrate to facilitate electron transfer of SOD: Application to in vivo monitoring of O2.- in a rat brain[J].Biosensors and Bioelectronics, 2013,43: 101-107.
[25] Lin Y Q, Liu K, Yu P, et al. A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide[J]. Analytical Chemistry, 2007, 79(24): 9577-9583.
[26] Zhang K L, He X L, Liu Y, et al. Highly selective cerebral ATP assay based on micrometer scale ion current rectification at polyimidazolium-modified micropipettes [J]. Analytical Chemistry, 2017, 89(12): 6794-6799.
[27] Chesler M. Regulation and modulation of pH in the brain [J]. Physiological Reviews, 2003, 83(4): 1183-1221.
[28] Anderson M, Moshnikova A, Engelman D M, et al. Probe for the measurement of cell surface pH in vivo and ex vivo [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(29): 8177-8181.
[29] Leibold N K, Hove D L A, Esquivel G, et al. The brain acid-base homeostasis and serotonin: A perspective on the use of carbon dioxide as human and rodent experimental model of panic[J]. Progress in Neurobiology, 2015, 129: 58-78.
[30] Zhao H S, Carney K E, Falgoust L, et al. Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders[J]. Progress in Neurobiology, 2016, 138:19-35.
[31] Rossi D J, Brady J D, Mohr C, et al. Astrocyte metabolism and signaling during brain ischemia[J]. Nature Neuroscience,2007, 10(11): 1377-1386.
[32] Vollmer L L, Strawn J R, Sah R. Acid-base dysregulation and chemosensory mechanisms in panic disorder: a translational update[J]. Translational Psychiatry, 2015, 5: e572.
[33] Dole M. The glass electrode[M]Wiely: New York, 1941.
[34] Takmakov P, Zachek M K, Keithley R B, et al. Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes[J]. Analytical Chemistry, 2010, 82(23): 9892-9900.
[35] Hao J, Xiao T F, Wu F, et al. High antifouling property of ion-selective membrane: toward in vivo monitoring of pH change in live brain of rats with membrane coated carbon fiber electrodes[J]. Analytical Chemistry, 2016, 88(22):11238-11243.
[36] Zigmond M J. Harvey J A. Resistance to central norepinephrine depletion and decreased mortality in rats chronically exposed to electric foot shock[J]. Journal of Neuro-Visceral Relations, 1970, 31(4): 373-381.
[37] Zhao F, Zhang L M, Zhu A W, et al. In vivo monitoring of local pH values in a live rat brain based on the design of a specific electroactive molecule for H+[J]. Chemical Communications, 2016, 52(18): 3717-3720.
[38] Zhou J, Zhang L M, Tian Y. Micro electrochemical pH sensor applicable for real-time ratiometric monitoring of pH values in rat brains[J]. Analytical Chemistry, 2016, 88(4): 2113-2118.
[39] Liu W, Dong H, Zhang L M, et al. Development of an efficient biosensorfor the in vivo monitoring of Cu+ and pH in the brain: rational design and synthesis of recognition molecules[J]. Angewandte Chemie-International Edition,2017, 56(51): 16328-16332.
[40] De D M, Yen K Y, Hmitou I, et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells[J]. Nature, 2016, 530(7588): 113-116.
[41] Ryu J K, Min D, Rah S H, et al. Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover[J]. Science, 2015, 347(6229): 1485-1489.
[42] Tsuda M, Shigemotomogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury[J]. Nature, 2003, 424(6950): 778-783.
[43] Garfinkel L, Altschuld R A, Garfinkel D. Magnesium in cardiac energy metabolism[J]. Journal of Molecular and Cellular Cardiology, 1986, 18(10): 1003-1013
[44] Zhang Z P, Zhao L Z, Lin Y Q, et al. Online electrochemical measurements of Ca2+ and Mg2+ in rat brain based on divalent cation enhancement toward electrocatalytic NADH oxidation[J]. Analytical Chemistry, 2010, 82(23):9885-9891
[45] Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J]. Nature, 1980, 288(5789): 373-376.
[46] Jia L, Bonaventura C, Bonaventura J, et al. S-nitrosohaemoglobin:a dynamic activity of blood involved in vascular control[J]. Nature, 1996, 380(6571): 221-226.
[47] Kang Y, Dempo Y, Ohashi A, et al. Nitric oxide activates leak K+ currents in the presumed cholinergic neuron of basal forebrain[J]Journal ofNeurophysiology, 2007, 98(6):3397-3410.
[48] Moon J, Ha Y, Kim M, et al. Dual electrochemical microsensor for real-time simultaneous monitoring of nitric oxide and potassium ion changes in a rat brain during spontaneous neocortical epileptic seizure [J]. Analytical Chemistry, 2016, 88(18): 8942-8948.
[49] Schwartz M W, Seeley R J, Tschop M H, et al. Cooperation between brain and islet in glucose homeostasis and diabetes[J]. Nature, 2013, 503(7474): 59-66.
[50] Gordijo C R, Koulajian K, Shuhendler A J, et al. Nanotechnology-enabled closed loop insulin delivery device: In vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control[J]. Advanced Functional Materials, 2011, 21(1): 73-82.
[51] Osundiji M A, Lam D D, Shaw J, et al. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion[J].Diabetes, 2012,61(2): 321-328.
[52] Marino J S, Xu Y, Hill J W. Central insulin and leptinmediated autonomic control of glucose homeostasis [J].Trends in Endocrinology and Metabolism, 2011, 22 (7):275-285.
[53] Rocchitta G, Secchi O, Alvau M D, et al. Simultaneous telemetric monitoring of brain glucose and lactate and motion in freely moving rats[J]. Analytical Chemistry,2013, 85(21): 10282-10288.
[54] Li R X, Guo D Y, Ye J S, et al. Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains[J]. Analyst, 2015, 140(11): 3746-3752.
[55] Li S, Zhu A W, Zhu T, et al. Single biosensor for simultaneous quantification of glucose and pH in a rat brain of diabetic model using both current and potential outputs[J]. Analytical Chemistry, 2017, 89(12): 6656-6662. |