[1] Oakley-Girvan I, Davis S W. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review[J]. Cancer Biomarkers, 2018, 21: 29-39.
[2] Sîngeap A M, Trifan A, Cojocariu C, et al. Colon capsule endoscopy compared to colonoscopy for colorectal neoplasms diagnosis: an initial experience and a brief review of the literature[J]. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 2012, 116(1): 145-149.
[3] Boots A W, Bos L D, van der Schee M P, et al. Exhaled molecular fingerprinting in diagnosis and monitoring: validating volatile promises[J]. Trends in Molecular Medicine, 2015, 21(10): 633-644.
[4] Li M X, Yang D K, Brock G, et al. Breath carbonyl compounds as biomarkers of lung cancer[J]. Lung Cancer, 2015, 90(1): 92-97.
[5] Brandman S, Ko J P. Pulmonary nodule detection, characterization, and management with multidetector computed tomography[J]. Journal of Thoracic Imaging, 2011, 26(2): 90-105.
[6] Handa H, Usuba A, Maddula S, et al. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry[J]. PloS One, 2014, 9(12): e114555.
[7] Sun X H, Shao K, Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis[J]. Analytical and Bioanalytical Chemistry, 2016, 408(11): 2759-2780.
[8] Buljubasic F, Buchbauer G. The scent of human diseases: a review on specific volatile organic compounds as diagnostic biomarkers[J]. Flavour and Fragrance Journal, 2015, 30(1): 5-25.
[9] Amann A, de Lacy Costello B, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. Journal of Breath Research, 2014, 8(3): 034001.
[10] Fenske J D, Paulson S E. Human breath emissions of VOCs[J]. Journal of the Air & Waste Management Association, 1999, 49(5): 594-598.
[11] Buljubasic F, Buchbauer G. The scent of human diseases: a review on specific volatile organic compounds as diagnostic biomarkers[J]. Flavour and Fragrance Journal, 2015, 30(1): 5-25.
[12] Boots A W, Bos L D, van der Schee M P, et al. Exhaled molecular fingerprinting in diagnosis and monitoring: validating volatile promises[J]. Trends in Molecular Med-
icine, 2015, 21(10): 633-644.
[13] Turner C. Techniques and issues in breath and clinical sample headspace analysis for disease diagnosis[J]. Bioanalysis, 2016, 8(7): 677-690.
[14] Zonta G, Anania G, Fabbri B, et al. Detection of colorectal cancer biomarkers in the presence of interfering gases[J]. Sensors and Actuators B: Chemical, 2015, 218: 289-295.
[15] de Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body[J]. Journal of Breath Research, 2014, 8(1): 014001.
[16] Wang Z, Wang C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements[J]. Journal of Breath Research, 2013, 7(3): 037109.
[17] Tangerman A, Meuwese-Arends M T, van Tongeren J H M. A new sensitive assay for measuring volatile sulphur compounds in human breath by Tenax trapping and gas chromatography and its application in liver cirrhosis[J]. Clinica Chimica Acta, 1983, 130(1): 103-110.
[18] Boots A W, Smolinska A, van Berkel J, et al. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry[J]. Journal of Breath Research, 2014, 8(2): 027106.
[19] Mazzatenta A, Pokorski M, Sartucci F, et al. Volatile organic compounds (VOCs) fingerprint of Alzheimer’s disease[J]. Respiratory Physiology & Neurobiology, 2015, 209: 81-84.
[20] Mazzone P J. Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer[J]. Journal of Thoracic Oncology, 2008, 3(7): 774-780.
[21] Vishinkin R, Haick H. Nanoscale sensor technologies for disease detection via volatolomics[J]. Small, 2015, 11(46): 6142-6164.
[22] Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection[J]. Accounts of Chemical Research, 2013, 47(1): 66-76.
[23] Kulkarni G S, Zhong Z. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor[J]. Nano Letters, 2012, 12(2): 719-723.
[24] Garg N, Mohanty A, Lazarus N, et al. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors[J]. Nanotechnology, 2010, 21(40): 405501.
[25] Peng G, Hakim M, Broza Y Y, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors[J]. British Journal of Cancer, 2010, 103(4): 542-551.
[26] Dovgolevsky E, Konvalina G, Tisch U, et al. Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres[J]. The Journal of Physical Chemistry C, 2010, 114(33): 14042-14049.
[27] Kahn N, Lavie O, Paz M, et al. Dynamic nanoparticlebased flexible sensors: Diagnosis of ovarian carcinoma from exhaled breath[J]. Nano Letters, 2015, 15(10): 7023-7028.
[28] Lentka ?, Kotarski M, Smulko J, et al. Fluctuation-enhanced sensing with organically functionalized gold nanoparticle gas sensors targeting biomedical applications[J]. Talanta, 2016, 160: 9-14.
[29] Zhang Z, Yu W, Wang J, et al. Ultrasensitive surface-enhanced Raman scattering sensor of gaseous aldehydes as biomarkers of lung cancer on dendritic Ag nanocrystals[J]. Analytical Chemistry, 2017, 89(3): 1416-1420.
[30] Yamazoe N. New approaches for improving semiconductor gas sensors[J]. Sensors and Actuators B: Chemical, 1991, 5(1/4): 7-19.
[31] Barsan N, Schweizer-Berberich M, Göpel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report[J]. Fresenius Journal of Analytical Chemistry, 1999, 365(4): 287-304.
[32] Yamazoe N, Kurokawa Y, Seiyama T. Effects of additives on semiconductor gas sensors[J]. Sensors and Actuators, 1983, 4: 283-289.
[33] Korotcenkov G, Brinzari V, Boris Y, et al. Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis[J]. Thin Solid Films, 2003, 436(1): 119-126.
[34] Korotcenkov G. Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches[J]. Sensors and Actuators B: Chemical, 2005, 107(1): 209-232.
[35] Shin J, Choi S J, Lee I, et al. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes[J]. Advanced Functional Materials, 2013, 23(19): 2357-2367.
[36] Righettoni M, Tricoli A, Gass S, et al. Breath acetone monitoring by portable Si: WO3 gas sensors[J]. Analytica Chimica Acta, 2012, 738: 69-75.
[37] Katwal G, Paulose M, Rusakova I A, et al. Rapid growth of zinc oxide nanotube-nanowire hybrid architectures and their use in breast cancer-related volatile organics detection[J]. Nano Letters, 2016, 16(5): 3014-3021.
[38] Phillips M, Cataneo R N, Ditkoff B A, et al. Prediction of breast cancer using volatile biomarkers in the breath[J]. Breast Cancer Research and Treatment, 2006, 99(1): 19-21.
[39] Tomer V K, Duhan S. Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors[J]. Journal of Materials Chemistry A, 2016, 4(3): 1033-1043.
[40] Zhang R, Zhou T T, Zhang T. Functionalization of hybrid 1D SnO2-ZnO nanofibers for formaldehyde detection[J]. Advanced Materials Interfaces, 2018, 5(20): 1800967.
[41] Wang C X, Yin L W, Zhang L Y, et al. Metal oxide gas sensors: sensitivity and influencing factors[J]. Sensors, 2010, 10(3): 2088-2106.
[42] Jalal A, Alam F, RoyChoudhury S, et al. Prospects and challenges of volatile organic compound (VOC) sensors in human healthcare[J]. ACS Sensors, 2018, 3(7): 1246-1263.
[43] Ellis J E, Star A. Carbon nanotube based gas sensors toward breath analysis[J]. ChemPlusChem, 2016, 81(12): 1248-1265.
[44] Zilberman Y, Tisch U, Shuster G, et al. Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres[J]. Advanced Materials, 2010, 22(38): 4317-4320.
[45] Wang F, Swager T M. Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes[J]. Journal of the American Chemical Society, 2011, 133(29): 11181-11193.
[46] Van Quang V, Hung V N, Phan V N, et al. Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature[J]. Thin Solid Films, 2014, 568: 6-12.
[47] Zhang G J, Guo X X, Wang S L, et al. New graphene fiber coating for volatile organic compounds analysis[J]. Journal of Chromatography B, 2014, 969: 128-131.
[48] Chatterjee S, Castro M, Feller J F. Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants[J]. Sensors and Actuators B: Chemical, 2015, 220: 840-849.
[49] Nag S, Sachan A, Castro M, et al. Spray layer-by-layer assembly of POSS functionalized CNT quantum chemo-resistive sensors with tuneable selectivity and ppm resolution to VOC biomarkers[J]. Sensors and Actuators B: Chemical, 2016, 222: 362-373.
[50] Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J].Journal of Hazardous Materials, 2017, 338: 102-123.
[51] Huang L Z, Wang Z, Zhu X F, et al. Electrical gas sensors based on structured organic ultra-thin films and nanocrystals on solid state substrates[J]. Nanoscale Horizons, 2016, 1(5): 383-393.
[52] Peng H L, Li W J, Ning F J, et al. Amphiphilic chitosan derivatives-based liposomes: synthesis, development, and properties as a carrier for sustained release of salidroside[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 626-633.
[53] Qin Y M, Shi J J, Gong X G, et al. A luminescent inorganic/organic composite ultrathin film based on a 2D Cascade FRET process and its potential VOC selective sensing properties[J]. Advanced Functional Materials, 2016, 26(37): 6752-6759.
[54] Gao R, Yan D. Ordered assembly of hybrid room-temperature phosphorescence thin films showing polarized emission and the sensing of VOCs[J]. Chemical Communications, 2017, 53(39): 5408-5411.
[55] Dolai S, Bhunia S K, Beglaryan S S, et al. Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs)[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2891-2898.
[56] Broza Y Y, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds[J]. Nanomedicine, 2013, 8(5): 785-806.
[57] Peng G, Tisch U, Haick H. Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples[J]. Nano Letters, 2009, 9(4): 1362-1368.
[58] Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles[J]. Nature Nanotechnology, 2009, 4(10): 669.
[59] Zilberman Y, Ionescu R, Feng X, et al. Nanoarray of polycyclic aromatic hydrocarbons and carbon nanotubes for accurate and predictive detection in real-world environmental humidity[J]. ACS Nano, 2011, 5(8): 6743-6753.
[60] Nag S, Duarte L, Bertrand E, et al. Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers[J]. Journal of Materials Chemistry B, 2014, 2(38): 6571-6579.
[61] Chen L, Huang L, Lin Y J, et al. Fully gravure-printed WO3/Pt-decorated rGO nanosheets composite film for detection of acetone[J]. Sensors and Actuators B: Chemical, 2018, 255: 1482-1490.
[62] Li Y, Li J H, Xu H. Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell[J]. RSC Advances, 2017, 7(20): 11959-11968.
[63] Daneshkhah A, Shrestha S, Agarwal M, et al. Poly (vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath[J]. Sensors and Actuators B: Chemical, 2015, 221: 635-643.
[64] Liu L, Zhang D M, Zhang Q, et al. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection[J]. Biosensors and Bioelectronics, 2017, 93: 94-101.
[65] Zhang M, Feng G X, Song Z G, et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds[J]. Journal of the American Chemical Society, 2014, 136(20): 7241-7244.
[66] Dong M J, Zhao M, Ou S, et al. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules[J]. Angewandte Chemie International Edition, 2014, 53(6): 1575-1579.
[67] Nugent P, Belmabkhout Y, Burd S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439): 80-84.
[68] Deng H, Doonan C J, Furukawa H, et al. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010, 327(5967): 846-850.
[69] Férey G, Serre C, Devic T, et al. Why hybrid porous solids capture greenhouse gases?[J]. Chemical Society Reviews, 2011, 40(2): 550-562.
[70] Wu H H, Gong Q H, Olson D H, et al. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J]. Chemical Reviews, 2012, 112(2): 836-868.
[71] Luan Q(栾琼), Xue C F(薛春峰), Zhu H Y(祝红叶), et al. Electrochemical synthesis of porous polyaniline electrodes using HKUST-1 as a template and their electrochemical supercapacitor property[J]. Journal of Electrochemistry(电化学), 2017, 23(1): 13-20
[72] Li Y F(李亚峰), Sun Q Q(孙晴晴), Wei M D(魏明灯). Application of metal-organic frameworks in dye-sensitised solar cells[J]. Journal of Electrochemistry(电化学), 2016, 22(4): 332-339
[73] Cui Y J, Yue Y F, Qian G D, et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2): 1126-1162.
[74] Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2011, 112(2): 1105-1125.
[75] Khoshaman A H, Bahreyni B. Application of metal organic framework crystals for sensing of volatile organic gases[J]. Sensors and Actuators B: Chemical, 2012, 162(1): 114-119.
[76] Homayoonnia S, Zeinali S. Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection[J]. Sensors and Actuators B: Chemical, 2016, 237: 776-786.
[77] Ghanbarian M, Zeinali S, Mostafavi A. A novel MIL-53 (Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds[J]. Sensors and Actuators B: Chemical, 2018, 267: 381-391.
[78] Qiao X Z, Su B S, Liu C, et al. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@ MOF structure[J]. Advanced Materials, 2018, 30(5): 1702275.
[79] Lee H K, Lee Y H, Morabito J V, et al. Driving CO2 to a quasi-condensed phase at the interface between a nanoparticle surface and a metal-organic framework at 1 bar and 298 K[J]. Journal of the American Chemical Society, 2017, 139(33): 11513-11518.
[80] Qiao X Z, Xue Z J, Liu L, et al. Superficial layer-enhanced raman scattering (SLERS) for depth detection of non-contact molecules[J]. Advanced Materials, 2019, 31(4): 1804275. |