电化学(中英文) ›› 2021, Vol. 27 ›› Issue (5): 558-569. doi: 10.13208/j.electrochem.210326
收稿日期:
2021-03-26
修回日期:
2021-05-22
出版日期:
2021-10-28
发布日期:
2021-05-26
通讯作者:
韩严和
E-mail:hanyanhe@bipt.edu.cn
基金资助:
Qi Sun1,2, Yan-He Han1,*(), Xiao-Lu Fu1
Received:
2021-03-26
Revised:
2021-05-22
Published:
2021-10-28
Online:
2021-05-26
Contact:
Yan-He Han
E-mail:hanyanhe@bipt.edu.cn
摘要:
通过制备Ti/α/β-PbO2、Ti/Ag/β-PbO2这两种含有不同中间层的钛基二氧化铅电极来探究电催化氧化技术快速测定葡萄糖模拟废水中有机物(COD)含量的可行性。为了评估两种电极的各项性能,首先采用扫描电镜(SEM)、X射线衍射(XRD)对电极进行形貌表征,其次进行电化学性能测试包括线性伏安曲线(LSV)、塔菲尔曲线(Tafel)、循环伏安曲线(CV)以及交流阻抗测量分析。结果表明,Ti/α/β-PbO2电极表面晶体结构更加均匀,晶粒尺寸偏小,具有更大的电活性表面积。Ti/α/β-PbO2电极的析氧电位为1.77 V,为·OH的产生提供良好条件。在Tafel、CV测试中,Ti/α/β-PbO2电极的交换电流密度i0及比电容Cp分别为0.0995 A·cm-1、0.004098 F·cm-1均高于Ti/Ag/β-PbO2电极,说明Ti/α/β-PbO2电极的耐腐蚀性以及释放电子的能力优异。最终选用Ti/α/β-PbO2电极为工作电极。Ti/α/β-PbO2电极检测COD的最佳条件为:氧化电位1.30 V、电解时间150 s、电解液浓度0.03 mol·L-1 硝酸钠(NaNO3)。电化学法与比色消解法测定COD的相关系数可达0.9909,同时具有良好的重现性与相关性,COD的检测范围为0 mg·L-1 ~ 500 mg·L-1。在误差允许的范围内可以替代标准的重铬酸钾法,为实现COD的在线快速检测提供参考价值。
孙齐, 韩严和, 付晓璐. 改性钛基PbO2电极的制备及其对COD的快速检测[J]. 电化学(中英文), 2021, 27(5): 558-569.
Qi Sun, Yan-He Han, Xiao-Lu Fu. Preparation of Modified Titanium Based PbO2 Electrode and Its Rapid Detection of COD[J]. Journal of Electrochemistry, 2021, 27(5): 558-569.
[1] |
Ma J. Determination of chemical oxygen demand in aqueous samples with non-electrochemical methods[J]. Trends Environ. Anal. Chem., 2017, 14(4): 37-43.
doi: 10.1016/j.teac.2017.05.002 URL |
[2] |
Li C F, Song G W. Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods[J]. Sensor. Actuat. B - Chem., 2009, 137(2): 432-436.
doi: 10.1016/j.snb.2009.01.055 URL |
[3] | Qi M M(齐蒙蒙), Han Y H(韩严和), Sun Q(孙齐). Principle and application of advanced oxidation method for determination of chemical oxygen demand[J]. Environ. Chem.(环境化学), 2019, 38(11): 2481-2497. |
[4] |
Ma C J, Tan F, Zhao H M, Chen S, Quan X. Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J]. Sensor. Actuat. B - Chem., 2011, 155(1): 114-119.
doi: 10.1016/j.snb.2010.11.033 URL |
[5] |
Chen J, Liu S, Qi X, Yan S F, Guo Q. Study and design on chemical oxygen demand measurement based on ultraviolet absorption[J]. Sensor. Actuat. B - Chem., 2018, 254(1): 778-784.
doi: 10.1016/j.snb.2017.04.070 URL |
[6] |
Mo H L, Tang Y, Wang X Z, Liu J, Kong D D, Chen Y M, Wan P Y, Cheng H N, Sun T Q, Zhang L Y, Zhang M, Liu S Y, Sun Y Z, Wang N, Xing L X, Wang L, Jiang Y, Xu X, Zhang Y Y, Meng X D. Development of a three-dimensional structured carbon fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination[J]. Electrochim. Acta, 2015, 176(9): 1100-1107.
doi: 10.1016/j.electacta.2015.07.126 URL |
[7] | Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K. Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique[M]. Procedia Engineering, 2012, 47(9): 1117-1120. |
[8] |
Yang J Q, Chen J W, Zhou Y K, Wu K B. A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand[J]. Sensor. Actuat. B - Chem., 2011, 153(1): 78-82.
doi: 10.1016/j.snb.2010.10.015 URL |
[9] |
Li X L, Lin D H, Lu K C, Chen X, Yin S Y, Li Y, Zhang Z Y, Tang M H, Chen G S. Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand[J]. Anal. Chim. Acta, 2020, 1122(7): 31-38.
doi: 10.1016/j.aca.2020.05.009 URL |
[10] |
Liang L Q, Yin J, Bao J P, Cong L C, Huang W M, Lin H B, Shi Z. Preparation of Au nanoparticles modified TiO2 nanotube array sensor and its application as chemical oxygen demand sensor[J]. Chinese Chem. Lett., 2019, 30(1): 167-170.
doi: 10.1016/j.cclet.2018.01.049 URL |
[11] |
Zheng Z Y, Yu Q, Chen Z, Zhu W, Hu Q, Liu Y Y, Gui L, Song Y Z. Investigation of localized electrochemical reactivity on a β-PbO2 electrode using scanning electrochemical microscopy[J]. J. Electroanal. Chem., 2020, 878: 114699.
doi: 10.1016/j.jelechem.2020.114699 URL |
[12] |
Zheng Y H, Su W Q, Chen S Y, Wu X Z, Chen X M. Ti/SnO2-Sb2O2-RuO5/α-PbO2/β-PbO2 electrodes for pollutants degradation[J]. Chem. Eng. J., 2011, 174(1): 304-309.
doi: 10.1016/j.cej.2011.09.035 URL |
[13] | Zhang Y J(张英杰), Liu J M(刘嘉铭), Zhao J B(赵金保), Huang L(黄令), Li X(李雪). Effect of silver loading on lithium storage performance of TiO2 flexible film electrode[J]. Chinese J. Inorg. Chem.(无机化学学报), 2017, 33(5): 809-816. |
[14] | Wu X L(吴晓玲). Study on the method of analyzing the content of heavy metals in soil by XRF[D]. Chengdu University of Technology(成都理工大学), 2016. |
[15] | Alderton D. X-ray diffraction(XRD)[M]. United States:Encyclopedia of geology (Second Edition), 2021: 520-531. |
[16] |
Shao C R, Zhang F, Li X, Zhang J H, Jiang Y S, Cheng H Y, Zhu K G. Influence of Cr doping on the oxygen evolution potential of SnO2/Ti and Sb-SnO2/Ti electrodes[J]. J. Electroanal. Chem., 2019, 832(1): 436-443.
doi: 10.1016/j.jelechem.2018.11.058 URL |
[17] |
Bessegato G G, Cooke M D, Christensen P A, Wood D, Zanoni M V B. Synjournal and electrochemical characterization of Si/TiO2/Au composite anode: Efficient oxygen evolution and hydroxyl radicals generation[J]. Electrochim. Acta, 2021, 370: 137742.
doi: 10.1016/j.electacta.2021.137742 URL |
[18] | Zhang Y C(张一弛), Tang W J(汤文静), Chen Q W(陈倩文), Zhuo M N(卓孟宁), Wang L Z(王立章). Evaluation strategy of electrode performance for electrocatalytic oxidation of organic pollutants[J]. China Environ. Sci.(中国环境科学), 2020, 40(8): 3433-3440. |
[19] | Mo H L, Tang Y, Wang N, Zhang M, Cheng H N, Chen Y M, Wan P Y, Sun Y Z, Liu S Y, Wang L. Performance improvement in chemical oxygen demand determination using carbon fiber felt/CeO2-β-PbO2 electrode deposited by cyclic voltammetry method[J]. J. Solid State Electro-chem., 2016, 20(8): 2179-2189. |
[20] | Wang Q(王琴), Wang X C(王晓春), Yang D W(杨冬伟), Li L(李露), Jia Y J(贾友见), Shi J(施锦). Causes of electrode deactivation during CO2 electroreduction on Au electrode[J]. J. Chem. Reaction Eng.&Pro.(化学反应工程与工艺), 2015, 31(4): 352-358. |
[21] |
Liu J H, Han L F, Xu J, Han Z H. Effect of current density on interface structure and performance of CF/β-PbO2 electrodes during zinc electrowinning[J]. Ceram. Int., 2020, 46(2): 2403-2408.
doi: 10.1016/j.ceramint.2019.09.233 URL |
[22] | Liao D H(廖登辉), Chen Z(陈阵), Guo Z C(郭忠诚), Lu L F(陆丽芳). Preparation of new stainless steel-based lead dioxide - tungsten carbide composite electrode material[J]. Chin. J. Appl. Chem.(应用化学), 2013, 30(2): 196-202. |
[23] |
Zhang W L, Lin H B, Kong H S, Lu H Y, Yang Z, Liu T T. High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate[J]. Int. J. Hydrogen Energ., 2014, 39(30): 17153-17161.
doi: 10.1016/j.ijhydene.2014.08.039 URL |
[24] |
Xu H, Yuan Q S, Shao D, Yang H H. Fabrication and characterization of PbO2 electrode modified with [Fe(CN)6]3- and its application on electrochemical degradation of alkalilignin[J]. J. Hazard. Mater., 2015, 286(25): 509-516.
doi: 10.1016/j.jhazmat.2014.12.065 URL |
[25] |
Vinuth R T N, Hoskeri P A, Muralidhara H B, Prasanna B P, Kumar K Y, Alharthi F A, Raghu M S. Tantalum pentoxide functionalized nitrogen-doped reduced graphene oxide as a competent electrode material for enhanced specific capacitance in a hybrid supercapacitor device[J]. J. Alloy. Compd., 2021, 861(4): 158572.
doi: 10.1016/j.jallcom.2020.158572 URL |
[26] |
Lin J D, Chou C T. The influence of phosphorus content on the microstructure and specific capacitance of etched electroless Ni-P coatings[J]. Surf. Coat. Tech., 2019, 368(6): 126-137.
doi: 10.1016/j.surfcoat.2019.04.009 URL |
[27] |
Yang S, Zhao F Y, Li X R, Cao B K, Mo Y, Chen D M, Chen Y. Electrode structural changes and their effects on capacitance performance during preparation and charge-discharge processes[J]. J. Energy Storage, 2019, 24(8): 100799.
doi: 10.1016/j.est.2019.100799 URL |
[28] |
Iqbal M F, Mahmood U H, Ashiq M N, Iqbal S, Bibi N, Parveen B. High specific capacitance and energy density of synthesized graphene oxide based hierarchical AlS nanorambutan for supercapacitor applications[J]. Electrochim. Acta, 2017, 246(8): 1097-1103.
doi: 10.1016/j.electacta.2017.06.123 URL |
[29] |
Kondo T, Tamura Y, Hoshino M, Watanabe T, Aikawa T, Yuasa M, Einaga Y. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode[J]. Anal. Chem., 2014, 86(16): 8066-8072.
doi: 10.1021/ac500919k URL |
[30] | Yang S Y(杨世迎), Zhang W Y(张文义), Shan L(单良), Yang X(杨鑫), Wang P(王萍). Discussion on Cl- interference in the method of COD detection in landfill leachate[J]. Chin. J. Environ. Sci.(环境科学), 2010, 31(4): 1014-1020. |
[31] |
Ma C J, Tan F, Zhao H M, Chen S, Quan X. Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J]. Sensor. Actuat. B - Chem., 2011, 155(1): 114-119.
doi: 10.1016/j.snb.2010.11.033 URL |
[32] | Xie T(谢天), Dan D Z(旦德忠), Wang B(王斌). Application of Ti/PbO2 electrode in the determination of COD[J]. J. Sichuan Univ.(Eng. Sci. Ed.), 2004, 36(1): 37-40. |
[33] |
Yu H B, Ma C J, Quan X, Chen S, Zhao H M. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J]. Environ. Sci. Technol., 2009, 43(6): 1935-1939.
doi: 10.1021/es8033878 URL |
[1] | 郑玉梅,尹振,王虹,李建新. Co3O4/Ti电催化膜电极制备及其苯甲醇催化氧化性能[J]. 电化学(中英文), 2018, 24(2): 122-128. |
[2] | 林晓东,陈杜宏,田中群. 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学(中英文), 2016, 22(6): 570-576. |
[3] | 王霞,胡俊,李永军*. 电化学制备二维“花状”Pt纳米结构及其对甲醇的电催化氧化[J]. 电化学(中英文), 2014, 20(4): 365-369. |
[4] | 马永钧*,田玉秀,刘婧,周敏,丁静,金芝梅,王向梅. Nd-Fe-MoO42-氰桥混配聚合物修饰铂电极的丙三醇电催化氧化[J]. 电化学(中英文), 2014, 20(2): 150-155. |
[5] | 王彬, 王崇太, 华英杰, 刘津媛, 郑良飞. Keggin型钴取代杂多阴离子PW11O39Co(II)(H2O)5-的电催化性能[J]. 电化学(中英文), 2013, 19(5): 488-492. |
[6] | 苏静, 林海波, 徐红, 黄卫民, 何亚鹏. 草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化降解动力学[J]. 电化学(中英文), 2013, 19(4): 293-299. |
[7] | 刘晓蕾, 丹媛媛, 陆海彦, 林海波, 欧阳明丽, 袁传军. 不同掺杂元素的钛基PbO2电极对苯酚电催化氧化性能的影响[J]. 电化学(中英文), 2013, 19(1): 59-64. |
[8] | 胡光辉, 曾海霞, 魏志钢, 潘湛昌, 谢署光, 邹燕娣. Ni-P-TiO2化学复合镀层电极的乙醇电催化氧化[J]. 电化学(中英文), 2012, 18(2): 186-190. |
[9] | 陈野, 赵文丽, 温青. 阳极电沉积Ti/MnO2电极及其苯酚降解的电催化性能[J]. 电化学(中英文), 2011, 17(2): 199-203. |
[10] | 褚道葆, 查龙武, 王树西, 王建, 肖英, 侯源源, 何建国, 张雪娇, . 离子液体中CNT/nanoTiO_2-Pt膜电极电催化氧化葡萄糖[J]. 电化学(中英文), 2009, 15(3): 299-303. |
[11] | 崔艳萍, 杨昌柱, 黄健, 濮文虹, 张敬东, . 新型纳米金修饰玻碳电极对水杨酸的电催化氧化[J]. 电化学(中英文), 2008, 14(3): 298-303. |
[12] | 初园园, 邬冰, 唐亚文, 陆天虹, 高颖, . 甲醇在Pt/C和Pt/WO_3/C电极上的电氧化[J]. 电化学(中英文), 2008, 14(2): 155-158. |
[13] | 郑一雄;姚士冰;周绍民;. Ni-B非晶态合金纳米粉末微电极上甲醇的电催化氧化[J]. 电化学(中英文), 2007, 13(3): 307-311. |
[14] | 潘丹梅, 胡荣宗, 韦冬萍, 丁昊冬, . Ni电极电化学流通池检测四环素类药品的研究[J]. 电化学(中英文), 2007, 13(2): 122-126. |
[15] | 温轶,方建慧,曹为民,施利毅. 碳纳米管电极电催化氧化降解活性艳红X-3B研究[J]. 电化学(中英文), 2005, 11(3): 329-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||