[1] Stucki S, K?tz R, Carcer B, et al. Electrochemical waste water treatment using high overvotage anodes. Part Ⅱ: Anode performance and applications[J]. Journal of Applied Electrochemistry, 1991, 21: 99-104.[2] Lin H B(林海波), Wu Z Y(伍振毅), Huang W M(黄卫民), et al. Development and direction of electrochemical technologies for industrial wastewater treatment[J]. Chemical Industry and Engineering Progress(化工进展), 2008, 27(2): 223-230.[3] Couper A. M, Pletcher D, Frank C, et al. Electrode materials for electrosynthesis[J]. Chemical Reviews, 1990, 90(5): 837-865.[4] Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569.[5] Tahar N B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: A comparison of the activities of various electrode formulations[J]. Journal of Applied Electrochemistry, 1999, 29: 277-283.[6] Borras C, Laredo T, Scharifker B R. Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2[J]. Electrochimica Acta, 2003, 48(19): 775-2780.[7] Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism[J]. Environmental Science & Technology, 2005, 39(1): 363-370.[8] Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead diaoxide electrodeposition and its application: Influence of fluoride and iron ions[J]. Journal of Electroanalytical Chemistry, 1998, 454: 203-208.[9] Velichenko A B, Amadelli R, Baranova E A, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties[J]. Journal of Electroanalytical Chemistry, 2002, 527(1/2): 56-64.[10] Dalchiele E A, Cattarin S, Musiani M, et al. Electrodeposition studies in the MnO2+PbO2 system: Formation of Pb3Mn7O15[J]. Journal of Applied Electrochemistry, 2000, 30(1): 117-120.[11] Sandro C, Marco M. Electrosynthesis of nanocomposite materials for electrocatalysis[J]. Electrochimica Acta, 2007, 52(8): 2796-2805.[12] Velichenko A B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide[J]. Journal of Fluorine Chemistry, 2007, 128(4): 269-276.[13] Dan Y Y, Lu H Y, Liu X L, et al. Ti/PbO2+nano-Co3O4 composite electrode material for electrocatalysis of O2 evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2011, 36(3): 1949-1954.[14] Hine F, Yasuda M, Lida T, et al. On the RuO2-TiO2 interlayer of PbO2 electrodeposited Ti anode[J]. Electrochimica Acta, 1984, 29: 1447-1452.[15] Sirés I, Low C T J, Ponce-de-León C, F.C. et al. The deposition of nanostructured β-PbO2 coatings from aqueous methanesulfonic acid for the electrochemical oxidation of organic pollutants[J]. Electrochemistry Communications, 2010, 12(1): 70-74.[16] Comninellis C H, Pulgarin C. Anodic oxidation of phenol for waste water treatment[J]. Journal of Applied Electrochemistry, 1991, 21: 703-708.[17] Comninellis C, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. Journal of Applied Electrochemistry, 1993, 23: 108-112.[18] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic Pollutants for waste water treatment[J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862.[19] Ca?izares P, Martínez F, Díaz M, et al. Electrochemical oxidation of aqueous phenol wastes using active and non-active electrodes[J]. Journal of The Electrochemical Society, 2002, 149(8): D118-D124.[20] Ca?izares P, García-Gómez J, Lobato J, et al. Modeling of wastewater electro-oxidation processes part II. Application to active electrodes[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 1923-1931.[21] Ca?izares P, García-Gómez J, Lobato J, et al. Modeling of wastewater electro-oxidation processes part I. General description and application to inactive electrodes[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 1915-1922. |