[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
[2] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29.
[3] Recham N, Chotard J N, Dupont L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries[J]. Nature Material, 2010, 9(1):68-74.
[4] Kang K, Meng Y S, Breger J, et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries[J]. Science, 2006, 311(5763):977-980.
[5] Wang H. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5):6173-6179.
[6] Wang S, Li S, Sun Y, et al. Three-dimensional porous V2O5 cathode with ultra high rate capability[J]. Energy & Environmental Science, 2011, 4(8):2854-2857.
[7] Shubin Y, Xinliang F, Klaus M. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage[J]. Advanced Materials, 2011, 23(31):3575-3579.
[8] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5):310-315.
[9] Hong S Y, Kim Y, Park Y, et al. ChemInform Abstract: Charge Carriers in Rechargeable Batteries: Na Ions vs. Li Ions[J]. Energy & Environmental Science, 2013, 6(7):2067-2081.
[10] Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State & Materials Science, 2012, 16(4):168-177.
[11] Li H, Wu C, Wu F, et al. Sodium Ion Battery: A Promising Energy-storage Candidate for Supporting Renewable Electricity[J]. Acta Chimica Sinica, 2014, 72(1):21-29.
[12] Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3):5884-5901.
[13] Kim S W, Seo D H, Ma X, et al. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries[J]. Advanced Energy Materials, 2012, 2(7):710–721.
[14] Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9):3680-3688.
[15] Liu J, Zhang J G, Yang Z, et al. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid[J]. Advanced Functional Materials, 2013, 23(8):929–946.
[16] Yan Y, Mcdowell M T, Ill R, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7):2949-2954.
[17] Fergus J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(4):939-954.
[18] Chao D, Xia X, Liu J, et al. Lithium-Ion Batteries: A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: A High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries [J]. Advanced Materials, 2014, 26(33):5794-5800.
[19] Chunnian H, Shan W, Naiqin Z, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. Acs Nano, 2013, 7(5):4459-4469.
[20] Raju V, Rains J, Gates C, et al. Superior Cathode of Sodium-Ion Batteries: Orthorhombic V2O5 Nanoparticles Generated in Nanoporous Carbon by Ambient Hydrolysis Deposition[J]. Nano Letters, 2014, 14(7):4119-4124.
[21] Wang Y, Cao G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials, 2008, 20(12):2251–2269.
[22] Mai L, Xu X, Han C, et al. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property[J]. Nano Letters, 2011, 11(11):4992-4996.
[23] Zheng C, Qin Y, Ding W, et al. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage[J]. Advanced Functional Materials, 2009, 19(21):3420–3426.
[24] Ying W, Katsunori T, Huamei S, et al. Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays[J]. Journal of Physical Chemistry B, 2005, 109(8):3085-3088.
[25] Xiujuan W, Qinyou A, Qiulong W, et al. A Bowknot-like RuO2 quantum dots@V2O5 cathode with largely improved electrochemical performance[J]. Physical Chemistry Chemical Physics, 2014, 16(35):18680-18685.
[26] Wei Q, Jiang Z, Tan S, et al. Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage[J]. ACS Applied Materials & Interfaces, 2015, 7(33):18211−18217.
[27] Muller-Bouvet D, Baddour-Hadjean R, Tanabe M, et al. Electrochemically formed α-NaV2O5: A new sodium intercalation compound[J]. Electrochimica Acta, 2015, 176:586-593.
[28] Zhu K, Zhang C, Guo S, et al. Sponge-Like Cathode Material Self-Assembled from Two-Dimensional V2O5 Nanosheets for Sodium-Ion Batteries[J]. Chemelectrochem, 2015, 2(11):1660-1664.
[29] Wang X, Li G, Hassan F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy, 2015, 15:746-754.
[30] Lux S F, Placke T, Engelhardt C, et al. Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica[J]. Journal of the Electrochemical Society, 2012, 159(11):A1849-A1855.
[31] Sun C, Deng Y, Wan L, et al. Graphene Oxide-Immobilized NH2-Terminated Silicon Nanoparticles by Cross-Linked Interactions for Highly Stable Silicon Negative Electrodes[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11277-11285.
[32] Kim H, Dong J K, Seo D H, et al. Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery[J]. Chemistry of Materials, 2012, 24(6):1205-1211.
[33] Shen W, Li H, Wang C. Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(29):15190-15201.
[34] Zhang C X. Electrochemical Characteristics of C-doped NaVPO4F Cathode Material for Sodium-ion Battery[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(4):649-654.
[35] Yang Y. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10):5648-5655.
[36] Simeone R, Misztal I, Aguilar I, et al. Evaluation of the utility of diagonal elements of the genomic relationship matrix as a diagnostic tool to detect mislabelled genotyped animals in a broiler chicken population[J]. Journal of Animal Breeding & Genetics, 2011, 128(5):386–393.
[37] Pouchko S V, Ivanov-Schitz A K. Lithium insertion into γ-type vanadium oxide bronzes doped with molybdenum(VI) and tungsten(VI) ions[J]. Solid State Ionics, 2001, 144(1):151-161.
[38] Li Y M, Hibino M, Tanaka Y, et al. Evaluation of Mo-doped amorphous V2O5 films as a positive electrode for lithium batteries[J]. Solid State Ionics, 2001, 143(1):67-72.
[39] Jiang Y, Yang Z, Li W, et al. Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2015, 5(10):1402104.
[40] Park D Y, Myung S T. Carbon-Coated Magnetite Embedded on Carbon Nanotubes for Rechargeable Lithium and Sodium Batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11749-11757.
[41] Oh S M, Myung S T, Yoon C S, et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage[J]. Nano Letters, 2014, 14(3):1620-1626.
[42] Ge Y, Jiang H, Fu K, et al. Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2014, 272(272):860-865.
[43] Jun L, Kepeng S, Changbao Z, et al. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries[J]. Acs Nano, 2014, 8(7):7051-7059.
[44] Turner N H, Single A M. Determination of peak positions and areas from wide-scan XPS spectra[J]. Surface & Interface Analysis, 1990, 15(3):215-222.
[45] Brox B, Olefjord I. ESCA Studies of MoO2 and MoO3[J]. Surface\s&\sinterface Analysis, 1988, 13(1):3-6.
[46] Cornaglia L M, Lombardo E A. XPS studies of the surface oxidation states on vanadium-phosphorus-oxygen (VPO) equilibrated catalysts[J]. Applied Catalysis A General, 1995, 26(45):125-138.
[47] Moser T P, Schrader G L. Stability of model V-P-O catalysts for maleic anhydride synthesis[J]. Journal of Catalysis, 1987, 104(1):99-108.
[48] Qinyou A, Fan L, Qiuqi L, et al. Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode[J]. Nano Letters, 2014, 14(11):6250-6256.
[49] Jiang J, Tan G, Peng S, et al. Electrochemical performance of carbon-coated Li3V2(PO4)3 as a cathode material for asymmetric hybrid capacitors[J]. Electrochimica Acta, 2013, 107(3):59-65.
[50] Jinzhi, Sheng, Qiulong, et al. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode[J]. Nano Research, 2014, 7(11):1604-1612.
[51] Shanmugam M, Alsalme A, Alghamdi A, et al. Enhanced Photocatalytic Performance of the Graphene-V2O5 Nanocomposite in the Degradation of Methylene Blue Dye under Direct Sunlight.[J]. ACS Applied Materials & Interfaces, 2015, 868(27):53-59.
[52] Yifu Z, Xinghai L, Dongzhi C, et al. Fabrication of V3O7·H2O@C core-shell nanostructured composites and the effect of V3O7·H2O and V3O7·H2O@C on decomposition of ammonium perchlorate[J]. Solid State Ionics, 2011, 509(5):L69–L73.
[53] Wang D, Wei Q, Sheng J, et al. Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(17):12074-12079.
[54] Wang H, Gao X, Feng J, et al. Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries[J]. Electrochimica Acta, 2015, 182:769-774.
[55]Wei Q, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity[J]. Journal of Materials Chemistry A, 2015, 3(15):8070-8075. |