[1] Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochimica acta, 1998, 43(10): 1569-1574.
[2] Honbo H, Takei K, Ishii Y, et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding[J]. Journal of Power Sources, 2009, 189(1): 337-343.
[3] Smart M C, Ratnakumar B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of The Electrochemical Society, 2011, 158(4): A379-A389.
[4] Zinth V, von Lüders C, Hofmann M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159.
[5] Armstrong A R, Lyness C, Panchmatia P M, et al. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2[J]. Nature materials, 2011, 10(3): 223-229.
[6] Fan H, Li H, Fan L Z, et al. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries[J]. Journal of Power Sources, 2014, 249: 392-396.
[7] Petzl M, Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87.
[8] Su L, Zhang J, Huang J, et al. Path dependence of lithium ion cells aging under storage conditions[J]. Journal of Power Sources, 2016, 315: 35-46.
[9] Wu B, Li Z, Zhang J. Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity[J]. Journal of The Electrochemical Society, 2015, 162(1): A181-A191.
[10] Bauer M, Guenther C, Kasper M, et al. Discrimination of degradation processes in lithium-ion cells based on the sensitivity of aging indicators towards capacity loss[J]. Journal of Power Sources, 2015, 283: 494-504.
[11] Su L, Zhang J, Wang C, et al. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments[J]. Applied Energy, 2016, 163: 201-210.
[12] Spotnitz R. Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 72-80.
[13] Bloom I, Jansen A N, Abraham D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005, 139(1): 295-303.
[14] Bloom I, Christophersen J, Gering K. Differential voltage analyses of high-power lithium-ion cells: 2. Applications[J]. Journal of Power Sources, 2005, 139(1): 304-313.
[15] Bloom I, Christophersen J P, Abraham D P, et al. Differential voltage analyses of high-power lithium-ion cells: 3. Another anode phenomenon[J]. Journal of power sources, 2006, 157(1): 537-542.
[16] Bloom I, Walker L K, Basco J K, et al. Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC[J]. Journal of Power Sources, 2010, 195(3): 877-882.
[17] Bernhard B, Andreas G. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302.
[18] Yvonne K, Claudia B, Julian F, et al. A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells[J]. ChemPubSoc Europe, 2015, 21: 6062-6065. |