欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2014, Vol. 20 ›› Issue (1): 45-50.  doi: 10.13208/j.electrochem.121206

• 研究论文 • 上一篇    下一篇

中温固体氧化物燃料电池LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2梯度复合阴极制备及交流阻抗性能

李扬,黄波*,袁梦,张志秋,刘宗尧,唐旭晨,朱新坚   

  1. 上海交通大学 机械与动力工程学院,燃料电池研究所,上海 200240
  • 收稿日期:2012-12-06 修回日期:2013-02-21 出版日期:2014-02-25 发布日期:2014-02-24
  • 通讯作者: 黄波 E-mail:huangbo2k@hotmail.com
  • 基金资助:

    国家自然科学基金项目(No. 51201098)资助

Fabrication and Impedance Performance of Gradient LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2 Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cell

LI Yang, HUANG Bo*, YUAN Meng, ZHANG Zhi-qiu, LIU Zong-yao, TANG Xu-chen, ZHU Xin-jian   

  1. Institute of Fuel Cell, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2012-12-06 Revised:2013-02-21 Published:2014-02-25 Online:2014-02-24
  • Contact: HUANG Bo E-mail:huangbo2k@hotmail.com

摘要: 应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC)梯度复合阴极/Gd0.2Ce0.8O2/Sc0.1Zr0.9O1.95(ScSZ)/Gd0.2Ce0.8O2/LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC),组成梯度复合阴极对称电池. 实验表明,在750 oC工作温度下单层70%LNF-30%GDC(文中均指质量百分比)复合阴极的极化电阻为0.581 Ω·cm2,而三层60%LNF-40%GDC/70%LNF-30%GDC/100%LNF复合阴极的极化电阻最小(0.452 Ω·cm2). 由于阴极组成在ScSZ电解质和LNF阴极之间呈梯度变化,因此获得了最佳的阴极/电解质界面,大大加快了三相界面或气体/阴极/电解质三相接触点反应区的扩散,其电荷传递电阻Rct和浓差极化电阻Rd均减小,因而具有最低的阴极极化电阻值.

关键词: 固体氧化物燃料电池;LaNi0.6Fe0.4O3-&delta, 阴极;梯度阴极;极化电阻;交流阻抗

Abstract: A LNF-GDC composite cathode with a gradual change in the composition between ScSZ electrolyte and LNF cathode was fabricated to reduce the cathode polarization resistance (Rp). The gradual change in composition between ScSZ electrolyte and LNF cathode shows the decreases in the charge transfer resistance (Rct) and gas phase diffusion resistance (Rd). The results revealed that the Rp value, measuring 0.452 Ω·cm2 at 750 °C, was the lowest for LNF-GDC composite cathodes with three layers and gradient changes in composition between ScSZ and LNF (Cathode C),, whereas the Rp value of 70%LNF-30%GDC composite cathodes with one layer (Cathode A) was 0.581 Ω·cm2. The reduction in Rp for the LNF-GDC composite cathodes with three layers and gradient changes in composition between ScSZ and LNF may be related to the fact that the microstructure of the cathode/electrolyte interfaces is significantly improved, resulting in the increase in the area of triple phase boundaries (TPBs), which enhanced the surface exchange of oxygen. This implied that the gradient LNF-GDC composite cathodes showed excellent performance in terms of its electrochemical properties.

Key words: solid oxide fuel cell, LaNi0.6Fe0.4O3-δ cathode, gradient cathode, polarization resistance, electrochemical impedance spectroscopy

中图分类号: