[1] |
Sun H M, Yan Z H, Liu F M, Xu W C, Cheng F Y, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Adv. Mater., 2020, 32(3): e1806326. https://doi.org/10.1002/adma.201806326.
|
[2] |
Luo Y T, Zhang Z Y, Chhowalla M, Liu B L. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Adv. Mater., 2022, 34(16): e2108133. https://doi.org/10.1002/adma.202108133.
|
[3] |
Wang G J, Sun Y Z, Zhao Y D, Deng C, Zhu Y Z, Li Y C. Ultrafast electrochemical selenium doping strategy and the role of selenium in nickel-cobalt sulfide for enhanced overall water splitting[J]. Nano Res., 2025, 18(2): 94907165. https://doi.org/10.26599/NR.2025.94907165
|
[4] |
Gong S M, Meng Y, Jin Z Y, Hsu H-Y, Du M S, Liu F. Recent progress on the stability of electrocatalysts under high current densities toward industrial water splitting[J]. ACS Catal., 2024, 14(19): 14399-14435. https://doi.org/10.1021/acscatal.4c03700.
|
[5] |
Naik K M, Hashisake K, Higuchi E, Inoue H. Bifunctional intermetallic PdZn nanoparticle-loaded deficient TiO2 nanosheet electrocatalyst for electrochemical water splitting[J]. Mater. Adv., 2023, 4(2): 561-569. https://doi.org/10.1039/D2MA00904H.
|
[6] |
Naik K M, Sampath S. Two-step oxygen reduction on spinel NiFe2O4 catalyst: Rechargeable, aqueous solution- and gel-based, Zn-air batteries[J]. Electrochim. Acta, 2018, 292: 268-275. https://doi.org/10.1016/j.electacta.2018.08.138.
|
[7] |
Xu S, Ruan X W, Ganesan M, Wu J D, Ravi S K, Cui X Q. Transition metal-based catalysts for urea oxidation reaction (UOR): Catalyst design strategies, applications, and future perspectives[J]. Adv. Funct. Mater., 2024, 34(18): 2313309. https://doi.org/10.1002/adfm.202313309.
|
[8] |
Li J X, Wang S L, Sun S J, Wu X, Zhang B G, Feng L G. A review of hetero-structured Ni-based active catalysts for urea electrolysis[J]. J. Mater. Chem. A, 2022, 10(17): 9308-9326. https://doi.org/10.1039/D2TA00120A.
|
[9] |
Hu X R, Zhu J Y, Li J F, Wu Q S. Urea electrooxidation: current development and understanding of Ni-based catalysts[J]. ChemElectroChem, 2020, 7(15): 3211-3228. https://doi.org/10.1002/celc.202000404.
|
[10] |
Gao X T, Zhang S, Wang P T, Jaroniec M, Zheng Y, Qiao S Z. Urea catalytic oxidation for energy and environmental applications[J]. Chem. Soc. Rev., 2024, 53(3): 1552-1591. https://doi.org/10.1039/D3CS00963G.
doi: 10.1039/d3cs00963g
URL
pmid: 38168798
|
[11] |
Zhang T X, Liu S, Cai W T, He X Y, Wang H Y, Zhu B X, Qin Y, Zhang J, Liu X J, Zhang X, Wang F M. Utilizing cationic vacancies to enhance nickel-cobalt layered double hydroxides for efficient electrocatalytic urea oxidation reaction[J]. Chem. Eng. J., 2024, 500:156766. https://doi.org/10.1016/j.cej.2024.156766.
|
[12] |
Zhu B J, Liang Z B, Zou R Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction[J]. Small, 2020, 16(7): e1906133. https://doi.org/10.1002/smll.201906133.
|
[13] |
Paygozar S, Sabour Rouh Aghdam A, Hassanizadeh E, Andaveh R, Barati Darband G. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production[J]. Int. J. Hydrogen Energy, 2023, 48(20): 7219-7259. https://doi.org/10.1016/j.ijhydene.2022.11.087.
|
[14] |
Liu H Q, Hu S H, Long B J, Dai H, Yang Y F, Yang M H, Zhang Q, Ke Z, Li W J, He D, Wang Z Y, Xiao X H. In situ unraveling surface reconstruction of Ni-CoP nanowire for excellent alkaline water electrolysis[J]. Energy Environ. Mater., 2024, 8(2): e12834. https://doi.org/10.1002/eem2.12834.
|
[15] |
Han X T, Yu C, Niu Y Y, Wang Z, Kang Y B, Ren Y W, Wang H, Park H S, Qiu J. Full bulk-structure reconstruction into amorphorized cobalt-iron oxyhydroxide nanosheet electrocatalysts for greatly improved electrocatalytic activity[J]. Small Methods, 2020, 4(10): 2000546. https://doi.org/10.1002/smtd.202000546.
|
[16] |
Liu X, Meng J S, Zhu J X, Huang M, Wen B, Guo R T, Mai L Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations[J]. Adv. Mater., 2021, 33(32): e2007344. https://doi.org/10.1002/adma.202007344.
|
[17] |
Liu J Z, Guo L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis[J]. Matter, 2021, 4(9): 2850-2873. https://doi.org/10.1016/j.matt.2021.05.025.
|
[18] |
Ye S H, Wang J P, Hu J, Chen Z D, Zheng L R, Fu Y H, Lei Y Q, Ren X Z, He C X, Zhang Q L, Liu J H. Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity[J]. ACS Catal., 2021, 11(10): 6104-6112. https://doi.org/10.1021/acscatal.1c01300.
|
[19] |
Taitt B J, Nam D H, Choi K S. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J]. ACS Catal., 2018, 9(1): 660-670. https://doi.org/10.1021/acscatal.8b04003.
|
[20] |
Zhu Y Q, Zhou H, Dong J C, Xu S M, Xu M, Zheng L R, Xu Q, Ma L, Li Z, Shao M F, Duan H H. Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation[J]. Angew. Chem. Int. Ed., 2023, 62(15): e202219048. https://doi.org/10.1002/ange.202219048.
|
[21] |
Li Z H, Yan Y F, Xu S M, Zhou H, Xu M, Ma L, Shao M F, Kong X G, Wang B, Zheng L R, Duan H H. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nat. Commun., 2022, 13(1): 147. https://doi.org/10.1038/s41467-021-27806-3.
|
[22] |
Ngo Q P, Prabhakaran S, Kim D H, Kim B S. Rational design of ultrahigh-loading Ir single atoms on reconstructed Mn-NiOOH for enhanced catalytic performance in urea-water electrolysis[J]. Small, 2024, 20(50): e2406786. https://doi.org/10.1002/smll.202406786.
|
[23] |
Cai M M, Zhu Q, Wang X Y, Shao Z Y, Yao L, Zeng H, Wu X F, Chen J, Huang K K, Feng S H. Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: Composite electrocatalyst for oxygen evolution and urea oxidation reactions[J]. Adv. Mater., 2023, 35(7): e2209338. https://doi.org/10.1002/adma.202209338.
|
[24] |
Mariappan A, Mannu P, Ranjith K S, Nga T T T, Han Y K, Dong C L, Dharman R K, Oh T H. Novel heterostructure-based CoFe and cobalt oxysulfide nanocubes for effective bifunctional electrocatalytic water and urea oxidation[J]. Small, 2024, 20(26): 2310112. https://doi.org/10.1002/smll.202310112.
|
[25] |
Guo X, Qiu L Y, Li M G, Tian F Y, Ren X, Jie S, Geng S, Han G H, Huang Y R, Song Y, Yang W W, Yu Y S. Accelerating the generation of NiOOH by in-situ surface phosphating nickel sulfide for promoting the proton-coupled electron transfer kinetics of urea electrolysis[J]. Chem. Eng. J., 2024, 483: 149264. https://doi.org/10.1016/j.cej.2024.149264.
|
[26] |
Song S Z, Bao H L, Lin X, Du X L, Zhou J, Zhang L J, Chen N, Hu J, Wang J Q. Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst[J]. J. Energy Chem., 2020, 42: 5-10. https://doi.org/10.1016/j.jechem.2019.05.021.
doi: 10.1016/j.jechem.2019.05.021
URL
|
[27] |
Lv J Q, Guan X F, Huang Y Y, Cai L X, Yu M X, Li X Y, Yu Y L, Chen D G. Stepwise chemical oxidation to access ultrathin metal (oxy)-hydroxide nanosheets for the oxygen evolution reaction[J]. Nanoscale, 2021, 13(37): 15755-15762. https://doi.org/10.1039/D1NR03813C.
|
[28] |
Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis[J]. Adv. Energy Mater., 2021, 11(39): 2102074. https://doi.org/10.1002/aenm.202102074.
|
[29] |
Iwata R, Zhang L, Wilke K L, Gong S, He M, Gallant B M, Wang E N. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting[J]. Joule, 2021, 5(4): 887-900. https://doi.org/10.1016/j.joule.2021.02.015.
|
[30] |
Qin H Y, Ye Y K, Li J H, Jia W Q, Zheng S Y, Cao X J, Lin G L, Jiao L F. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation[J]. Adv. Funct. Mater., 2022, 33(4): 2209698. https://doi.org/10.1002/adfm.202209698.
|
[31] |
Yan M L, Zhang J J, Wang C, Gao L, Liu W G, Zhang J H, Liu C Q, Lu Z W, Yang L J, Jiang C L, Zhao Y. Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production[J]. J. Colloid Interface Sci., 2025, 677(Pt A): 1069-1079. https://doi.org/10.1016/j.jcis.2024.07.239.
|
[32] |
Li L F, Zhang X, Humayun M, Xu X F, Shang Z X, Li Z S, Yuen M F, Hong C X, Chen Z H, Zeng J R, Bououdina M, Temst K, Wang X, Wang C. Manipulation of electron spins with oxygen vacancy on amorphous/crystalline composite-type catalyst[J]. ACS Nano, 2024, 18(1): 1214-1225. https://doi.org/10.1021/acsnano.3c12133.
doi: 10.1021/acsnano.3c12133
URL
pmid: 38150422
|
[33] |
Tong Y, Chen P Z, Zhang M X, Zhou T P, Zhang L D, Chu W S, Wu C Z, Xie Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation[J]. ACS Catal., 2017, 8(1): 1-7. https://doi.org/10.1021/acscatal.7b03177.
|
[34] |
Huang B, Wang J N, Xie D L, Huang Q P, Wen D, Zeng X Q, Lin D M, Guo W H, Sun H C, Xie F Y. Surface reconstruction of defect-engineered MIL-88@Fe2O3 p-n heterojunction for enhanced electrocatalytic water and urea oxidation[J]. Chem. Eng. J., 2024, 498:155006. https://doi.org/10.1016/j.cej.2024.155006.
|
[35] |
Xu L, Jiang Q Q, Xiao Z H, Li X Y, Huo J, Wang S Y, Dai L M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016, 55(17): 5277-5281. https://doi.org/10.1002/anie.201600687.
|
[36] |
Zhang B B, Huang X J, Hu H Y, Chou L J, Bi Y P. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting[J]. J. Mater. Chem. A, 2019, 7(9): 4415-4419. https://doi.org/10.1039/C8TA12012A.
|
[37] |
Ou Y Q, Tian W Q, Liu L, Zhang Y H, Xiao P. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte[J]. J. Mater. Chem. A, 2018, 6(12): 5217-5228. https://doi.org/10.1039/C7TA11401J.
|
[38] |
Cho I S, Logar M, Lee C H, Cai L, Prinz F B, Zheng X. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting[J]. Nano Lett., 2014, 14(1): 24-31. https://doi.org/10.1021/nl4026902.
|
[39] |
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169.
doi: 10.1103/physrevb.54.11169
URL
pmid: 9984901
|
[40] |
Hafner J. Ab-initio simulations of materials using vasp: Density-functional theory and beyond[J]. J. Comput. Chem., 2008, 29(13): 2044-2078. https://doi.org/10.1002/jcc.21057.
doi: 10.1002/jcc.21057
URL
pmid: 18623101
|
[41] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992, 46(11): 6671-6687. https://doi.org/10.1103/PhysRevB.46.6671.
URL
pmid: 10002368
|
[42] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
doi: 10.1103/PhysRevLett.77.3865
URL
pmid: 10062328
|
[43] |
Rossmeisl J, Logadottir A, Norskov J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chem. Phys., 2005, 319(1-3): 178-184. https://doi.org/10.1016/j.chemphys.2005.05.038.
|
[44] |
Peterson A A, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov J K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy Environ. Sci., 2010, 3(9): 1311-1315. https://doi.org/10.1039/C0EE00071J.
|
[45] |
Ji L L, Wang J Y, Teng X, Meyer T J, Chen Z. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catal., 2019, 10(1): 412-419. https://doi.org/10.1021/acscatal.9b03623.
|
[46] |
Fan K, Zou H Y, Lu Y, Chen H, Li F S, Liu J X, Sun L D, Tong L P, Toney M F, Sui M L, Yu J G. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation[J]. ACS Nano, 2018, 12(12): 12369-12379. https://doi.org/10.1021/acsnano.8b06312.
doi: 10.1021/acsnano.8b06312
URL
pmid: 30508382
|
[47] |
Xu S, Jiao D X, Ruan X W, Jin Z Y, Qiu Y, Feng Z P, Zheng L R, Fan J C, Zheng W T, Cui X Q. O-2p hybridization enhanced transformation of active γ-NiOOH by chromium doping for efficient urea oxidation reaction[J]. Adv. Funct. Mater., 2024, 34(36): 2401265. https://doi.org/10.1002/adfm.202401265.
|
[48] |
Chen Z Y, Song Y, Cai J Y, Zheng X S, Han D D, Wu Y S, Zang Y P, Niu S W, Liu Y F, Zhu J F, Liu X J, Wang G M. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J]. Angew. Chem. Int. Ed., 2018, 57(18): 5076-5080. https://doi.org/10.1002/anie.201801834.
|
[49] |
Chen H Y, Xu Y S, Li X J, Ma Q, Xie D L, Mei Y, Wang G J, Zhu Y Z. Hierarchical NiCo2Se4 arrays composed of atomically thin nanosheets: Simultaneous improvements in thermodynamics and kinetics for electrocatalytic water splitting in neutral media[J]. Adv. Sci., 2024, 11(31): 2402889. https://doi.org/10.1002/advs.202402889.
|
[50] |
Hammer B, Norskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240. https://doi.org/10.1038/376238a0.
|