锂金属负极的理论容量高达3860 mAh·g-1,被视为开发下一代高能量密度电池的核心基础。然而,其实际应用受到多项关键挑战的阻碍,包括枝晶形成、不稳定的固体电解质界面(SEI)、与电解质的副反应,以及由此引发的安全风险。本综述系统探讨了液态和固态电池体系中锂的成核、生长与脱嵌机制,深入分析了理解枝晶生长成因至关重要的关键理论概念,如异相成核热力学、表面扩散动力学、空间电荷效应及 SEI 诱导成核。此外,综述还讨论了导致 SEI 降解和死锂形成的电化学-力学耦合失效问题。针对液态电池体系,综述提出了抑制枝晶形成与SEI不稳定性的策略,包括电解质优化、人工SEI设计及电极骨架设计。在固态电池方面,综述对聚合物、硫化物和卤化物电解质相关的界面挑战进行了细致分析,并针对不同类型的固态电解质总结了相应的解决方案。同时,综述强调了先进表征技术与计算模拟在理解和调控锂金属-电解质界面过程中的重要性。展望未来,综述指出了未来的研究方向:需重视跨学科方法的整合,以应对这些相互关联的挑战。通过解决这些问题,锂金属电池的快速商业化与广泛应用之路将更加清晰,使我们更接近实现稳定、高能量密度的电池,从而满足各行业现代储能应用日益增长的需求。