电化学(中英文) ›› 2024, Vol. 30 ›› Issue (11): 2414005. doi: 10.61558/2993-074X.3495
杨丽芳a, 陈俊杰a, 陈灵玉a, 金思琪a, 方韬雄a, 何思佳a, 沈粮骏a, 黄新建b, 孙霄航a,*(), 邓海强a,*()
收稿日期:
2024-06-10
接受日期:
2024-09-04
出版日期:
2024-11-28
发布日期:
2024-09-19
Li-Fang Yanga, Jun-Jie Chena, Ling-Yu Chena, Si-Qi Jina, Tao-Xiong Fanga, Si-Jia Hea, Liang-Jun Shena, Xin-Jian Huangb, Xiao-Hang Suna,*(), Hai-Qiang Denga,*()
Received:
2024-06-10
Accepted:
2024-09-04
Published:
2024-11-28
Online:
2024-09-19
Contact:
* Hai-Qiang Deng, E-mail: 摘要:
单颗粒碰撞电化学通过溶液中颗粒与电极的随机碰撞,以单颗粒分辨率直接表征实体/颗粒,获得丰富的物理化学信息,成为近二十年来电分析化学的前沿之一。有趣的是,(微/纳米级)传感电极从可极化的液/液(汞/液)界面发展到固/液界面,再到液/液界面(即两互不相溶电解质溶液界面,ITIES),仿佛完成了一个循环(但实际上并没有)。ITIES凭借其可极化性(在水/α,α,α-三氟甲苯界面处高达1.1 V的电势窗口)和高重现性,已成为蓬勃发展的SECE中最新的传感电极。SECE在固/液界面发展起来的四种测量模式(直接电解、介导电解、电流屏蔽和电荷置换)也在微型ITIES上得到了充分实现。本文将从基本概念、运行机制和最新进展(例如离子体的发现、法拉第离子转移的屏蔽效应等)的角度讨论ITIES中的这四种模式,并展望这一新兴领域未来的发展方向。
杨丽芳, 陈俊杰, 陈灵玉, 金思琪, 方韬雄, 何思佳, 沈粮骏, 黄新建, 孙霄航, 邓海强. 微纳米尺度两互不相溶电解质溶液界面的单颗粒碰撞电化学[J]. 电化学(中英文), 2024, 30(11): 2414005.
Li-Fang Yang, Jun-Jie Chen, Ling-Yu Chen, Si-Qi Jin, Tao-Xiong Fang, Si-Jia He, Liang-Jun Shen, Xin-Jian Huang, Xiao-Hang Sun, Hai-Qiang Deng. Single-Entity Collisional Electrochemistry at the Micro- and/or Nano-Interface Between Two Immiscible Electrolyte Solutions[J]. Journal of Electrochemistry, 2024, 30(11): 2414005.
[1] |
Baker L A. Perspective and prospectus on single-entity electrochemistry[J]. J. Am. Chem. Soc., 2018, 140(46): 15549-15559.
doi: 10.1021/jacs.8b09747 pmid: 30388887 |
[2] | Coulter W H. Means for counting particles suspended in a fluid: US, 2656508[P]. 1953. |
[3] | Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres[J]. Nature, 1976, 260(5554): 799-802. |
[4] |
Finnegan J M, Borges R, Wightman R M. Comparison of cytosolic Ca2+ and exocytosis responses from single rat and bovine chromaffin cells[J]. Neuroscience, 1996, 71(3): 833-843.
pmid: 8867052 |
[5] |
Fan F R F, Bard A J. Electrochemical detection of single moleculas[J]. Science, 1995, 267(5199): 871-874.
pmid: 17813918 |
[6] | Meier J, Friedrich K A, Stimming U. Novel method for the investigation of single nanoparticle reactivity[J]. Faraday Discuss., 2002, 121: 365-372. |
[7] |
Xu B, Tao N J. Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science, 2003, 301(5637): 1221-1223.
pmid: 12947193 |
[8] | Micka K, Kadlec O. Depolarisation der quecksilbertropfelektrode durch suspensionen unlöslicher stoffe i. allgemeine beobachtungen[J]. Collect. Czech. Chem. Commun., 1956, 21: 647-651. |
[9] | Gorschlüter A, Sundermeier C, Roß B, Knoll M. Microparticle detector for biosensor application[J]. Sens. Actuators, B, 2002, 85(1-2): 158-165. |
[10] |
Quinn B M, Van’T Hof P G, Lemay S G. Time-resolved electrochemical detection of discrete adsorption events[J]. J. Am. Chem. Soc., 2004, 126(27): 8360-8361.
pmid: 15237976 |
[11] |
Xiao X, Bard A J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification[J]. J. Am. Chem. Soc., 2007, 129(31): 9610-9612.
pmid: 17630740 |
[12] | Zhou Y, Rees N V, Compton R G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution[J]. Angew. Chem. Int. Ed., 2011, 50(18): 4219-4221. |
[13] |
Laborda E, Molina A, Espín V F, Martínez-Ortiz F, García de la Torre J, Compton R G. Single fusion events at polarized liquid-liquid interfaces[J]. Angew. Chem. Int. Ed., 2017, 56(3): 782-785.
doi: 10.1002/anie.201610185 pmid: 27933691 |
[14] |
Stockmann T J, Angelé L, Brasiliense V, Combellas C, Kanoufi F. Platinum nanoparticle impacts at a liquid|liquid interface[J]. Angew. Chem. Int. Ed., 2017, 56(43): 13493-13497.
doi: 10.1002/anie.201707589 pmid: 28837257 |
[15] | Egbe O N, Morrissey B H P, Harvey N E, Schneider C, Cahill L S, Stockmann T J. Ionosome single entity electrochemical detection at a micro water/alkylphosphonium ionic liquid interface[J]. J. Electroanal. Chem., 2023, 945: 117678. |
[16] | Trojánek A, Mareček V, Samec Z. Open circuit potential transients associated with single emulsion droplet collisions at an interface between two immiscible electrolyte solutions[J]. Electrochem. Commun., 2018, 86: 113-116. |
[17] | Trojánek A, Samec Z. Study of the emulsion droplet collisions with the polarizable water/1,2-dichloroethane interface by the open circuit potential measurements[J]. Electrochim. Acta, 2019, 299: 875-885. |
[18] |
Deng H, Peljo P, Huang X, Smirnov E, Sarkar S, Maye S, Girault H H, Mandler D. Ionosomes: Observation of ionic bilayer water clusters[J]. J. Am. Chem. Soc., 2021, 143(20): 7671-7680.
doi: 10.1021/jacs.0c12250 pmid: 33978400 |
[19] |
Huang L H, Zhang J C, Xiang Z P, Wu D, Huang X J, Huang X Z, Liang Z X, Tang Z Y, Deng H Q. Faradaic counter for liposomes loaded with potassium, sodium ions, or protonated dopamine[J]. Anal. Chem., 2021, 93(27): 9495-9504.
doi: 10.1021/acs.analchem.1c01336 pmid: 34196181 |
[20] | Zhang J Y, Huang L H, Fang T X, Du F, Xiang Z P, Zhang J C, Chen R, Peljo P, Ouyang G F, Deng H Q. Discrete events of ionosomes at the water/toluene micro‐interface[J]. ChemElectroChem, 2022, 9(22): e202200624. |
[21] | Zhang J C, Huang L H, Fang T X, Xiang Z P, He S J, Peljo P, Gan S Y, Huang X J, Deng H Q. Quantized collision/fusion events of anionic ionosomes at a polarized soft micro‐interface[J]. Chem. - Asian J., 2022, 17(24): e202200731. |
[22] | Zhang J Y, He S J, Fang T X, Xiang Z P, Sun X H, Yu J Z, Ouyang G F, Huang X J, Deng H Q. Observing discrete blocking events at a polarized micro- or submicro-liquid/liquid interface[J]. J. Phys. Chem. B, 2023, 127(41): 8974-8981. |
[23] | Zhao L J, Qian R C, Ma W, Tian H, Long Y T. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision[J]. Anal. Chem., 2016, 88(17): 8375-8379. |
[24] |
Edel J B, Kornyshev A A, Urbakh M. Self-Assembly of nanoparticle arrays for use as mirrors, sensors, and antennas[J]. ACS Nano, 2013, 7(11): 9526-9532.
doi: 10.1021/nn405712r pmid: 24237248 |
[25] | Binder W H. Supramolecular assembly of nanoparticles at liquid-liquid interfaces[J]. Angew. Chem. Int. Ed., 2005, 44(33): 5172-5175. |
[26] | Taylor G, Girault H H. Ion transfer reactions across a liquid-liquid interface supported on a micropipette tip[J]. J. Electroanal. Chem. Interfacial Electrochem., 1986, 208(1):179-183. |
[27] | Shao Y, Mirkin M V. Fast kinetic measurements with nanometer-sized pipets. transfer of potassium ion from water into dichloroethane facilitated by dibenzo-18-crown-6[J]. J. Am. Chem. Soc., 1997, 119(34): 8103-8104. |
[28] | Shao Y, Liu B, Mirkin M V. Studying ionic reactions by a new generation/collection technique[J]. J. Am. Chem. Soc., 1998, 120(48): 12700-12701. |
[29] |
Liu S J, Li Q, Shao Y H. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces[J]. Chem. Soc. Rev., 2011, 40(5): 2236.
doi: 10.1039/c0cs00168f pmid: 21390350 |
[30] | Zhang S D, Li M Z, Su B, Shao Y H. Fabrication and use of nanopipettes in chemical analysis[J]. Annu. Rev. Anal. Chem., 2018, 11(1): 265-286. |
[31] |
Deng H, Dick J E, Kummer S, Kragl U, Strauss S H, Bard A J. Probing ion transfer across liquid-liquid interfaces by monitoring collisions of single femtoliter oil droplets on ultramicroelectrodes[J]. Anal. Chem., 2016, 88(15): 7754-7761.
doi: 10.1021/acs.analchem.6b01747 pmid: 27387789 |
[32] | Rodgers A N J, Booth S G, Dryfe R A W. Particle deposition and catalysis at the interface between two immiscible electrolyte solutions (ITIES): A mini-review[J]. Electrochem. Commun., 2014, 47: 17-20. |
[33] | Li X, Dunevall J, Ewing A G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry[J]. Acc. Chem. Res., 2016, 49(10): 2347-2354. |
[34] |
Poon J, Batchelor-McAuley C, Tschulik K, Compton R G. Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient[J]. Chem. Sci., 2015, 6(5): 2869-2876.
doi: 10.1039/c5sc00623f pmid: 28706674 |
[35] |
Stockmann T J, Lemineur J F, Liu H, Cometto C, Robert M, Combellas C, Kanoufi F. Single LiBH4 nanocrystal stochastic impacts at a micro water|ionic liquid interface[J]. Electrochim. Acta, 2019, 299: 222-230.
doi: 10.1016/j.electacta.2018.12.105 |
[36] | Svetličić V, Ivošević N, Kovac S, Žutić V. Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells[J]. Langmuir, 2000, 16(21): 8217-8220. |
[37] | Azimzadeh Sani M, Pavlopoulos N G, Pezzotti S, Serva A, Cignoni P, Linnemann J, Salanne M, Gaigeot M P, Tschulik K. Unexpectedly high capacitance of the metal nanoparticle/water interface: molecular‐level insights into the electrical double layer[J]. Angew. Chem. Int. Ed., 2022, 61(5): e202112679. |
[38] |
Crooks R M. Concluding remarks: single entity electrochemistry one step at a time[J]. Faraday Discuss., 2016, 193: 533-547.
pmid: 27761542 |
[39] | Lu S M, Vannoy K J, Dick J E, Long Y T. Multiphase chemistry under nanoconfinement: An electrochemical perspective[J]. J. Am. Chem. Soc., 2023, 145(46): 25043-25055. |
[40] |
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur J F, Actis P, Kanoufi F, Unwin P R. The New era of high-throughput nanoelectrochemistry[J]. Anal. Chem., 2023, 95(1): 319-356.
doi: 10.1021/acs.analchem.2c05105 pmid: 36625121 |
[41] |
Zhang L, Wahab O J, Jallow A A, O'Dell Z J, Pungsrisai T, Sridhar S, Vernon K L, Willets K A, Baker L A. Recent developments in single-entity electrochemistry[J]. Anal. Chem., 2024, 96: 8036-8055.
doi: 10.1021/acs.analchem.4c01406 pmid: 38727715 |
[42] | Nernst W, Riesenfeld E H. Ueber elektrolytische Erscheinungen u. elektromotorische Kräfte an der Grenzfläche zweier Lösungsmittel. Georg-Augusts-Universität zu Göttingen, 1901. |
[43] | Gavach C, Henry F. Chronopotentiometric investigation of the diffusion overvoltage at the interface between two non-miscible solutions: I. Aqueous solution-tetrabutylammonium ion specific liquid membrane[J]. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54(2): 361-370. |
[44] | Gros M, Gromb S, Gavach C. The double layer and ion adsorption at the interface between two non-miscible solutions[J]. J. Electroanal. Chem. Interfacial Electrochem., 1978, 89(1): 29-36. |
[45] | Samec Z, Mareček V, Weber J. Charge transfer between two immiscible electrolyte solutions[J]. J. Electroanal. Chem. Interfacial Electrochem., 1979, 100(1-2): 841-852. |
[46] |
Shi C, Anson F C. A Simple method for examining the electrochemistry of metalloporphyrins and other hydrophobic reactants in thin layers of organic solvents interposed between graphite electrodes and aqueous solutions[J]. Anal. Chem., 1998, 70(15): 3114-3118.
doi: 10.1021/ac980426k pmid: 21644651 |
[47] | Deng H Q, Huang X J, Wang L S, Tang A M. Estimation of the kinetics of anion transfer across the liquid/liquid interface, by means of Fourier transformed square-wave voltammetry[J]. Electrochem. Commun., 2009, 11(6): 1333-1336. |
[48] | Scholz F, Komorsky-Lovric S, Lovric M. A new access to Gibbs energies of transfer of ions across liquid/liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions[J]. Electrochem. Commun., 2000, 2(2): 112-118. |
[49] |
Deng H Q, Huang X J, Wang L S. A simultaneous study of kinetics and thermodynamics of anion transfer across the liquid/liquid interface by means of fourier transformed large-amplitude square-wave voltammetry at three-phase electrode[J]. Langmuir, 2010, 26(24): 19209-19216.
doi: 10.1021/la103612k pmid: 21082797 |
[50] |
Benjamin I. Mechanism and dynamics of ion transfer across a liquid-liquid interface[J]. Science, 1993, 261(5128): 1558-1560.
pmid: 17798113 |
[51] | Marcus R A. Theory of electron-transfer rates across liquid-liquid interfaces[J]. J. Phys. Chem., 1990, 94(10): 4152-4155. |
[52] |
Kikkawa N, Wang L, Morita A. Microscopic barrier mechanism of ion transport through liquid-liquid interface[J]. J. Am. Chem. Soc., 2015, 137(25): 8022-8025.
doi: 10.1021/jacs.5b04375 pmid: 26057005 |
[53] | Kakiuchi T. Avalanche transfer of charged particles across the electrochemical liquid|liquid interface[J]. Electrochem. Commun., 2000, 2(5): 317-321. |
[54] | Schweighofer K J, Benjamin I. Transfer of small ions across the water/1,2-dichloroethane interface[J]. J. Phys. Chem., 1995, 99(24): 9974-9985. |
[55] | Dale S E C, Unwin P R. Polarised liquid/liquid micro-interfaces move during charge transfer[J]. Electrochem. Commun., 2008, 10(5): 723-726. |
[56] | Samec Z. Electrical double layer at the interface between two immiscible electrolyte solutions[J]. Chem. Rev., 1988, 88(4): 617-632. |
[57] | Kakiuchi T, Senda M. Polarizability and electrocapillary measurements of the nitrobenzene-water interface[J]. Bull. Chem. Soc. Jpn., 1983, 56(5): 1322-1326. |
[58] | Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. J. Phys. Chem., 1959, 63(9): 1381-1387. |
[59] |
Hayamizu K, Chiba Y, Haishi T. Dynamic ionic radius of alkali metal ions in aqueous solution: a pulsed-field gradient NMR study[J]. RSC Adv., 2021, 11(33): 20252-20257.
doi: 10.1039/d1ra02301b pmid: 35479919 |
[60] | Shao Y, Stewart A A, Girault H H. Determination of the half-wave potential of the species limiting the potential window. Measurement of gibbs transfer energies at the water/1,2-dichloroethane interface[J]. J. Chem. Soc., Faraday Trans., 1991, 87(16): 2593. |
[61] | Smirnov E, Peljo P, Scanlon M D, Girault H H. Gold nanofilm redox catalysis for oxygen reduction at soft interfaces[J]. Electrochim. Acta, 2016, 197: 362-373. |
[62] | Sabela A, Mareček V, Samec Z, Girault H H. Standard gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane[J]. Electrochim. Acta, 1992, 37(2): 231-235. |
[63] |
Xiao X, Fan F R F, Zhou J, Bard A J. Current transients in single nanoparticle collision events[J]. J. Am. Chem. Soc., 2008, 130(49): 16669-16677.
doi: 10.1021/ja8051393 pmid: 19554731 |
[64] | Xiang Z P, Deng H Q, Peljo P, Fu Z Y, Wang S L, Mandler D, Sun G Q, Liang Z X. Electrochemical dynamics of a single platinum nanoparticle collision event for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(13): 3464-3468. |
[65] |
Smirnov E, Peljo P, Scanlon M D, Girault H H. Interfacial redox catalysis on gold nanofilms at soft interfaces[J]. ACS Nano, 2015, 9(6): 6565-6575.
doi: 10.1021/acsnano.5b02547 pmid: 26039934 |
[66] |
Peljo P, Scanlon M D, Olaya A J, Rivier L, Smirnov E. Redox electrocatalysis of floating nanoparticles: Determining electrocatalytic properties without the influence of solid supports[J]. J. Phys. Chem. Lett., 2017, 8(15): 3564-3575.
doi: 10.1021/acs.jpclett.7b00685 pmid: 28707892 |
[67] |
Scanlon M D, Smirnov E, Stockmann T J, Peljo P. Gold nanofilms at liquid-liquid interfaces: An emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics[J]. Chem. Rev., 2018, 118(7): 3722-3751.
doi: 10.1021/acs.chemrev.7b00595 pmid: 29381343 |
[68] | Hotta H, Ichikawa S, Sugihara T, Osakai T. Clarification of the mechanism of interfacial electron-transfer reaction between ferrocene and hexacyanoferrate(iii) by digital simulation of cyclic voltammograms[J]. J. Phys. Chem. B, 2003, 107(36): 9717-9725. |
[69] |
Osakai T, Ichikawa S, Hotta H, Nagatani H. A true electron-transfer reaction between 5,10,15,20-tetraphenylporphyrinato cadmium(ii) and the hexacyanoferrate couple at the nitrobenzene/water interface[J]. Anal. Sci., 2004, 20(11): 1567-1573.
pmid: 15566151 |
[70] | Jane Stockmann T, Deng H, Peljo P, Kontturi K, Opallo M. Mechanism of oxygen reduction by metallocenes near liquid|liquid interfaces[J]. J. Electroanal. Chem., 2014, 729: 43-52. |
[71] | Deng H, Peljo P, Momotenko D, Cortés-Salazar F, Stockmann T.J, Kontturi K, Opallo M, Girault H H. Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy[J]. J. Electroanal. Chem., 2014, 732: 101-109. |
[72] | Laborda E, Molina A. Impact experiments at the interface between two immiscible electrolyte solutions (ITIES)[J]. Curr. Opin. Electrochem., 2021, 26: 100664. |
[73] | Shao Y, Osborne M D, Girault H H. Assisted ion transfer at micro-ITIES supported at the tip of micropipettes[J]. J. Electroanal. Chem. Interfacial Electrochem., 1991, 318(1-2): 101-109. |
[74] | Shendure J, Balasubramanian S, Church G M, Gilbert W, Rogers J, Schloss J A, Waterston R H. DNA sequencing at 40: Past, present and future[J]. Nature, 2017, 550(7676): 345-353. |
[75] | Deng Z, Renault C. Detection of individual insulating entities by electrochemical blocking[J]. Curr. Opin. Electrochem., 2021, 25: 100619. |
[76] |
Dick J E, Renault C, Bard A J. Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes[J]. J. Am. Chem. Soc., 2015, 137(26): 8376-8379.
doi: 10.1021/jacs.5b04545 pmid: 26108405 |
[77] |
Moazzenzade T, Huskens J, Lemay S G. Stochastic electrochemistry at ultralow concentrations: the case for digital sensors[J]. Analyst, 2020, 145(3): 750-758.
doi: 10.1039/c9an01832h pmid: 31808469 |
[78] |
Rodgers P J, Amemiya S. Cyclic voltammetry at micropipet electrodes for the study of ion-transfer kinetics at liquid/liquid interfaces[J]. Anal. Chem., 2007, 79(24): 9276-9285.
pmid: 18004818 |
[79] | Bonezzi J, Boika A. Deciphering the magnitude of current steps in electrochemical blocking collision experiments and its implications[J]. Electrochim. Acta, 2017, 236: 252-259. |
[80] | Ẑutić V, Ćosović B, Marčenko E, Bihari N, Kršinić F. Surfactant production by marine phytoplankton[J]. Mar. Chem., 1981, 10(6): 505-520. |
[81] | Žutić V, Pleše T, Tomaić J, Legović T. Electrochemical characterization of fluid vesicles in natural waters[J]. Mol. Cryst. Liq. Cryst., 1984, 113(1): 131-145. |
[82] | Hatay I, Su B, Li F, Partovi-Nia R, Vrubel H, Hu X, Ersoz M, Girault H H. Hydrogen evolution at liquid-liquid interfaces[J]. Angew. Chem. Int. Ed., 2009, 121(28): 5241-5244. |
[83] | Lu S M, Chen M, Wen H, Zhong C B, Wang H W, Yu Z, Long Y T. Hydrodynamics-controlled single-particle electrocatalysis[J]. J. Am. Chem. Soc., 2024, 146: 15053-15060. |
[84] |
Zevenbergen M A G, Singh P S, Goluch E D, Wolfrum B L, Lemay S G. Stochastic sensing of single molecules in a nanofluidic electrochemical device[J]. Nano Lett., 2011, 11(7): 2881-2886.
doi: 10.1021/nl2013423 pmid: 21667924 |
[85] | Lesch A, Vaske B, Meiners F, Momotenko D, Cortés-Salazarv F, Girault H H, Wittstock G. Parallel imaging and template-free patterning of self‐assembled monolayers with soft linear microelectrode arrays[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10413-10416. |
[86] |
Lemay S G, Moazzenzade T. Single-entity electrochemistry for digital biosensing at ultralow concentrations[J]. Anal. Chem., 2021, 93(26): 9023-9031.
doi: 10.1021/acs.analchem.1c00510 pmid: 34167291 |
[1] | 秦富星, 李明珂, 周汇龙, 文为, 张修华, 王升富, 伍珍. 基于铂纳米颗粒碰撞电化学用于快速检测乳腺癌MCF-7细胞[J]. 电化学(中英文), 2024, 30(10): 2414004-. |
[2] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[3] | 张衡, 夏力行, 姜珊, 王福芝, 谭占鳌. 氮掺杂石墨毡对水系醌基氧化还原液流电池性能的影响[J]. 电化学(中英文), 2023, 29(12): 2203231-. |
[4] | 李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学(中英文), 2021, 27(5): 467-497. |
[5] | 王晓晓, 周子睿, 单强, 张增明, 黄俊, 刘欲文, 陈胜利. 锂离子电池多孔电极理论的回顾与新思考[J]. 电化学(中英文), 2020, 26(5): 596-606. |
[6] | 马洪运, 姚晓辉, 妙孟姚, 易阳, 伍绍中, 周江. 高镍正极材料(LiNi0.83Co0.12Mn0.05O2)45°C循环失效机理研究[J]. 电化学(中英文), 2020, 26(3): 431-440. |
[7] | 方亚辉, 刘智攀. 固液界面双电层的理论计算模拟[J]. 电化学(中英文), 2020, 26(1): 32-40. |
[8] | 吴元菲,庞 然,张 檬,周剑章,任 斌,田中群,吴德印. SPR银金电极上光电化学反应和EC-SERS理论研究[J]. 电化学(中英文), 2016, 22(4): 356-367. |
[9] | 顾菁,乔永辉,朱新宇,阴笑弘,张欣,陈烨,朱志伟,邵元华*. 液/液界面电化学及其进展[J]. 电化学(中英文), 2014, 20(3): 234-242. |
[10] | 赵刘斌, 吴德印, 任斌, 田中群, . 电化学界面SERS光谱的密度泛函理论研究[J]. 电化学(中英文), 2010, 16(3): 334-342. |
[11] | 刘峰名, 韩琪, 陈艳霞, 钟起玲, 任斌, 田中群. 电化学析氢反应诱导的电荷传递SERS效应(英文)[J]. 电化学(中英文), 2001, 7(1): 74-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||