电化学(中英文) ›› 2023, Vol. 29 ›› Issue (12): 2301261. doi: 10.13208/j.electrochem.2301261
所属专题: “下一代二次电池”专题文章; “表界面”专题文章
• 论文 • 上一篇
谷宇1,*(), 胡元飞1, 王卫伟1, 尤恩铭1, 唐帅1,2, 苏建加1, 易骏1, 颜佳伟1, 田中群1, 毛秉伟1,*()
收稿日期:
2023-01-26
接受日期:
2023-03-12
出版日期:
2023-12-28
发布日期:
2023-03-14
Yu Gu1,*(), Yuan-Fei Hu1, Wei-Wei Wang1, En-Ming You1, Shuai Tang1,2, Jian-Jia Su1, Jun Yi1, Jia-Wei Yan1, Zhong-Qun Tian1, Bing-Wei Mao1,*()
Received:
2023-01-26
Accepted:
2023-03-12
Published:
2023-12-28
Online:
2023-03-14
Contact:
*Tel: (86)13779953860; E-mail: About author:
# These authors contributed equally.
摘要:
锂电池体系中负极表面固态电解质界面相(SEI)对锂电池性能起到至关重要的作用。然而,SEI结构和化学组成复杂,其形成机理至今仍未完全阐明,阻碍了锂电池的发展和应用。本文从方法学角度出发,采用表面增强拉曼光谱(SERS)“借力”策略,通过优化银纳米粒子的结构并借助其外来表面局域等离激元共振作用,开展以EC-DMC为溶剂的碳酸酯类电解液体系中SEI成膜过程的原位研究。为了确保可靠的原位SERS测试,我们设计了一种三电极体系气密拉曼电池。我们利用原位SERS方法,在纳米银电极上获得了SEI成膜过程的组成和结构信息。研究表明,SEI随电位变化呈现出双层结构,其中内层由薄且致密的无机组分构成,外层由疏松的有机组分构成。同时,研究发现LEMC是EC还原的主要成分,而不是LEDC,且金属锂参与的化学反应在形成稳定SEI中的起到关键作用。此外,锂发生沉积后,由于锂与银的合金效应导致其介电常数发生变化,从而削无法进一步增强SEI的拉曼信号。本文为深入理解负极表面SEI的形成及演变过程提供依据,并为今后开展锂电池体系相关界面过程的原位研究提供借鉴。
谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261.
Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao. An In-Situ Raman Spectroscopic Study on the Interfacial Process of Carbonate-Based Electrolyte on Nanostructured Silver Electrode[J]. Journal of Electrochemistry, 2023, 29(12): 2301261.
[1] |
Atkins D, Ayerbe E, Benayad A, Capone F G, Capria E, Castelli I E, Cekic-Laskovic I, Ciria R, Dudy L, Edström K, Johnson M R, Li H, Lastra J M G, De Souza M L, Meunier V, Morcrette M, Reichert H, Simon P, Rueff J P, Sottmann J, Wenzel W, Grimaud A. Understanding battery interfaces by combined characterization and simulation approaches: Challenges and perspectives[J]. Adv. Energy Mater., 2021, 12(17): 2102687.
doi: 10.1002/aenm.v12.17 URL |
[2] |
Yu X, Manthiram A. Electrode-electrolyte interfaces in lithium-based batteries[J]. Energy Environ. Sci., 2018, 11(3): 527-543.
doi: 10.1039/C7EE02555F URL |
[3] |
Yan C, Xu R, Xiao Y, Ding J F, Xu L, Li B Q, Huang J Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries[J]. Adv. Funct. Mater., 2020, 30(23): 1909887.
doi: 10.1002/adfm.v30.23 URL |
[4] |
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. J. Electrochem. Soc., 1979, 126(12): 2047-2051.
doi: 10.1149/1.2128859 |
[5] |
Peled E, Menkin S. Review—SEI: Past, present and future[J]. J. Electrochem. Soc., 2017, 164(7): A1703-A1719.
doi: 10.1149/2.1441707jes URL |
[6] |
Xu R, Yan C, Huang J Q. Competitive solid-electrolyte interphase formation on working lithium anodes[J]. Trends Chem., 2021, 3(1): 5-14.
doi: 10.1016/j.trechm.2020.10.008 URL |
[7] |
Gu Y, Wang W W, Li Y J, Wu Q H, Tang S, Yan J W, Zheng M S, Wu D Y, Fan C H, Hu W Q, Chen Z B, Fang Y, Zhang Q H, Dong Q F, Mao B W. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nat. Commun., 2018, 9(1): 1339.
doi: 10.1038/s41467-018-03466-8 pmid: 29632301 |
[8] |
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115 URL |
[9] |
Aurbach D, Zaban A. Impedance spectroscopy of lithium electrodes. 1. General behavior in propylene carbonate solutions and the correlation to surface-chemistry and cycling efficiency[J]. J. Electroanal. Chem., 1993, 348(1-2): 155-179.
doi: 10.1016/0022-0728(93)80129-6 URL |
[10] |
Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J. Electrochem. Soc., 1997, 144(8): L208-L210.
doi: 10.1149/1.1837858 |
[11] | Gu Y, Wang W W, Yan J W, Wu D Y, Dong Q F, Mao B W. Surface electrochemistry approaches for understanding and creating smooth solid-electrolyte interphase and lithiophilic interfaces for lithium metal anodes[J]. Curr. Opin. Electrochem., 2021, 26: 100671. |
[12] |
Wu H, Jia H, Wang C, Zhang J G, Xu W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Adv. Energy Mater., 2020, 11(5): 2003092.
doi: 10.1002/aenm.v11.5 URL |
[13] |
Wang A P, Kadam S, Li H, Shi S Q, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Comput. Mater., 2018, 4(1): 15.
doi: 10.1038/s41524-018-0064-0 |
[14] |
Wang W W, Gu Y, Yan H, Li S, He J W, Xu H Y, Wu Q H, Yan J W, Mao B W. Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features[J]. Chem, 2020, 6(10): 2728-2745.
doi: 10.1016/j.chempr.2020.07.014 URL |
[15] |
Wang W W, Gu Y, Wang J H, Chen Z B, Yin X T, Wu Q H, Yan J W, Mao B W. Probing mechanical properties of solid-electrolyte interphases on Li nuclei by in situ AFM[J]. J. Electrochem. Soc., 2022, 169(2): 020563.
doi: 10.1149/1945-7111/ac53d0 |
[16] |
Wang W W, Gu Y, Yan H, Li K X, Chen Z B, Wu Q H, Kranz C, Yan J W, Mao B W. Formation sequence of solid electrolyte interphases and impacts on lithium deposition and dissolution on copper: An in situ atomic force microscopic study[J]. Faraday Discuss., 2022, 233: 190-205.
doi: 10.1039/D1FD00043H URL |
[17] |
Lin D C, Liu Y Y, Li Y B, Li Y Z, Pei A, Xie J, Huang W, Cui Y. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nat. Chem., 2019, 11(4): 382-389.
doi: 10.1038/s41557-018-0203-8 pmid: 30664717 |
[18] |
Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nat. Rev. Mater., 2016, 1(6): 16021.
doi: 10.1038/natrevmats.2016.21 |
[19] |
Panneerselvam R, Liu G K, Wang Y H, Liu J Y, Ding S Y, Li J F, Wu D Y, Tian Z Q. Surface-enhanced Raman spectroscopy: Bottlenecks and future directions[J]. Chem. Commun., 2018, 54(1): 10-25.
doi: 10.1039/C7CC05979E URL |
[20] |
Wu D Y, Li J F, Ren B, Tian Z Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chem. Soc. Rev., 2008, 37(5): 1025-1041.
doi: 10.1039/b707872m URL |
[21] |
Weiling M, Pfeiffer F, Baghernejad M. Vibrational spectroscopy insight into the electrode|electrolyte interface/interphase in lithium batteries[J]. Adv. Energy Mater., 2022, 12(46): 2202504.
doi: 10.1002/aenm.v12.46 URL |
[22] | Shen Y F, Chen Y L, Wang S X, Zhu Y, Wang W C, Wu M X, Chen Z D. Electrochemical SERS study of Benzotriazole and 3-mercapto-1-propanesulfonate in acidic solution on copper electrode[J]. J. Electrochem., 2022, 28(6): 2104451. |
[23] | Peng H Y, Wang J Z, Liu J, Yu H H, Lin J D, Wu D Y, Tian Z Q. Investigation on electrochemical processes of p-aminothiophenol on gold electrode of nanostructures[J]. J. Electrochem., 2022, 28(4): 2106281. |
[24] |
Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
doi: 10.1038/nature08907 |
[25] | Su M, Dong J C, Li J F. In-situ Raman spectroscopic study of electrochemical reactions at single crystal surfaces[J]. J. Electrochem., 2020, 26(1): 54-60. |
[26] |
Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B. Tip-enhanced Raman spectroscopy for surfaces and interfaces[J]. Chem. Soc. Rev., 2017, 46(13): 4020-4041.
doi: 10.1039/c7cs00206h pmid: 28590479 |
[27] |
Li H, Mo Y J, Pei N, Xu X X, Huang X J, Chen L Q. Surface-enhanced Raman scattering study on passivating films of Ag electrodes in lithium batteries[J]. J. Phys. Chem. B, 2000, 104(35): 8477-8480.
doi: 10.1021/jp000837g URL |
[28] |
Gogoi N, Melin T, Berg E J. Elucidating the step-wise solid electrolyte interphase formation in lithium-ion batteries with operando Raman spectroscopy[J]. Adv. Mater. interfaces, 2022, 9(22): 2200945.
doi: 10.1002/admi.v9.22 URL |
[29] |
Tang S, Gu Y, Yi J, Zeng Z, Ding S Y, Yan J W, Wu D Y, Ren B, Tian Z Q, Mao B W. An electrochemical surface-enhanced Raman spectroscopic study on nanorod-structured lithium prepared by electrodeposition[J]. J. Raman Spectrosc., 2016, 47(9): 1017-1023.
doi: 10.1002/jrs.v47.9 URL |
[30] |
Johnson L, Li C, Liu Z, Chen Y, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J M, Bruce P G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries[J]. Nat. Chem., 2014, 6(12): 1091-1099.
doi: 10.1038/nchem.2101 pmid: 25411888 |
[31] | Wang J W, Zhang Y L, Guo L M, Wang E K, Peng Z Q. Identifying reactive sites and transport limitations of oxygen reactions in aprotic lithium-O2 batteries at the stage of sudden death[J]. Angew. Chem. Int. Ed., 2016, 55(17): 5201-5205. |
[32] |
Hy S, Felix F, Rick J, Su W N, Hwang B J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Nixli(1-2x)/3mn(2-x)/3]O2 (0 ≤ x ≤ 0.5)[J]. J. Am. Chem. Soc., 2014, 136(3): 999-1007.
doi: 10.1021/ja410137s URL |
[33] |
Gajan A, Lecourt C, Torres Bautista B E, Fillaud L, Demeaux J, Lucas I T. Solid Electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy[J]. ACS Energy Lett., 2021, 6(5): 1757-1763.
doi: 10.1021/acsenergylett.1c00436 URL |
[34] |
Nanda J, Yang G, Hou T, Voylov D N, Li X, Ruther R E, Naguib M, Persson K, Veith G M, Sokolov A P. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy[J]. Joule, 2019, 3(8): 2001-2019.
doi: 10.1016/j.joule.2019.05.026 URL |
[35] |
Zhang W L, Lu Y, Wan L, Zhou P, Xia Y C, Yan S S, Chen X X, Zhou H Y, Dong H, Liu K. Engineering a passivating electric double layer for high performance lithium metal batteries[J]. Nat. Commun., 2022, 13(1): 2029.
doi: 10.1038/s41467-022-29761-z pmid: 35440573 |
[36] | Tian Z Q, Ren B, Li J F, Yang Z L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy[J]. Chem. Commun., 2007, (34): 3514-3534. |
[37] |
Li J F, Zhang Y J, Ding S Y, Panneerselvam R, Tian Z Q. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chem. Rev., 2017, 117(7): 5002-5069.
doi: 10.1021/acs.chemrev.6b00596 URL |
[38] |
Sharma B, Frontiera R R, Henry A I, Ringe E. Van Duyne R P. SERS: Materials, applications, and the future[J]. Mater. Today, 2012, 15(1-2): 16-25.
doi: 10.1016/S1369-7021(12)70017-2 URL |
[39] |
Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Adv. Mater., 2004, 16(19): 1685-1706.
doi: 10.1002/adma.v16:19 URL |
[40] |
Uzayisenga V, Lin X D, Li L M, Anema J R, Yang Z L, Huang Y F, Lin H X, Li S B, Li J F, Tian Z Q. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Langmuir, 2012, 28(24): 9140-9146.
doi: 10.1021/la3005536 pmid: 22506587 |
[41] |
Qiu Z, Zhang M, Wu D Y, Ding S Y, Zuo Q Q, Huang Y F, Shen W, Lin X D, Tian Z Q, Mao B W. Raman spectroscopic investigation on TiO2-N719 dye interfaces using Ag@TiO2 nanoparticles and potential correlation strategies[J]. ChemPhysChem, 2013, 14(10): 2217-2224.
doi: 10.1002/cphc.v14.10 URL |
[42] |
Li J F, Rudnev A, Fu Y, Bodappa N, Wandlowski T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: Tuning preparation strategies and selected applications[J]. ACS Nano, 2013, 7(10): 8940-8952.
doi: 10.1021/nn403444j URL |
[43] | Patnaik P. Handbook of inorganic chemicals[M]. New York: McGraw-Hill, 2003. |
[44] |
Johnson P B, Christy R W. Optical constants of the noble metals[J]. Phys. Rev. B, 1972, 6(12): 4370-4379.
doi: 10.1103/PhysRevB.6.4370 URL |
[45] | Zwilling M, Schmidt P C, Weiss A. Experimental and theoretical studies of optical properties on alloys of the intermetallic systems Li2Ag2-xInx and Li2Cd2-xInx[J]. Appl. Phys., 1978, 16(3): 255-269 |
[46] |
Huang Y F, Zhang M, Zhao L B, Feng J M, Wu D Y, Ren B, Tian Z Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J]. Angew. Chem. Int. Ed., 2014, 53(9): 2353-2357.
doi: 10.1002/anie.v53.9 URL |
[47] |
Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson W A, Zhang Y, Zhang J G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy, 2015, 15: 135-144.
doi: 10.1016/j.nanoen.2015.04.009 URL |
[48] |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4417.
doi: 10.1021/cr030203g pmid: 15669157 |
[49] | Aurbach D. Nonaqueous electrochemistry[M]. Marcel Dekker, 1999. |
[50] |
Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
doi: 10.1021/acsnano.8b05038 pmid: 30226745 |
[51] |
Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H. A Comparative Study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures[J]. J. Electrochem. Soc., 1996, 143(12): 3809.
doi: 10.1149/1.1837300 |
[52] |
Wang L, Menakath A, Han F, Wang Y, Zavalij P Y, Gaskell K J, Borodin O, Iuga D, Brown S P, Wang C, Xu K, Eichhorn B W. Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nat. Chem., 2019, 11(9): 789-796.
doi: 10.1038/s41557-019-0304-z pmid: 31427766 |
[1] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[2] | 滕久康, 王庆杰, 张亮, 张红梅, 陈晓涛, 张鹏, 赵金保. 热处理时间对锂电池正极材料Cr8O21的影响[J]. 电化学(中英文), 2021, 27(6): 689-697. |
[3] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
[4] | 赵一博, 刘蕙蕙, 陈松良, 薄首行. 先进成像技术在全固态锂电池关键问题研究中的应用[J]. 电化学(中英文), 2019, 25(1): 17-30. |
[5] | 王雪龙,肖睿娟, 向勇,李泓,陈立泉. 固态锂电池中正极/电解质界面的密度泛函计算研究[J]. 电化学(中英文), 2017, 23(4): 381-390. |
[6] | 李文俊,郑杰允,谷林,李泓*. 锂电池原位与非原位表征技术研究[J]. 电化学(中英文), 2015, 21(2): 99-114. |
[7] | 张天然, 李岱昕, 杨思七, 陶占良, 陈军. 第一性原理计算在锂离子电池负极材料中的应用[J]. 电化学(中英文), 2012, 18(3): 235-242. |
[8] | 郑铭尧, 潘俊仁, 郑如翔, 黃炳照, . 以X光吸收光谱分析能源材料行为特性(英文)[J]. 电化学(中英文), 2010, 16(3): 244-254. |
[9] | 黄行康, 常海涛, 甘健龙, 张清顺, 岳红军, 吕东平, 杨勇, . Li-birnessite型层状二氧化锰的合成及电化学性能[J]. 电化学(中英文), 2009, 15(2): 194-197. |
[10] | 吴锋, 刘亚栋, 陈人杰, 陈实, . LiBPON薄膜电解质的制备及电化学性能研究[J]. 电化学(中英文), 2009, 15(1): 17-21. |
[11] | 王丽琴;焦丽芳;袁华堂;王永梅;. 煅烧温度对锂离子正极材料Li[Ni_(0.475)Mn_(0.475)Co_(0.05)]O_2结构和电化学性能的影响[J]. 电化学(中英文), 2006, 12(3): 275-278. |
[12] | 聂茶庚,龚正良,孙岚,左娟,赖跃坤,林昌健. 软化学法合成TiO_2(B)纳米带及其储锂性能研究[J]. 电化学(中英文), 2004, 10(3): 330-333. |
[13] | 杜洪彦,程琥,杨勇. PEO基纳米复合聚合物电解质电化学性质的研究[J]. 电化学(中英文), 2004, 10(2): 215-221. |
[14] | 段淑贞, 管丛胜, 石青荣, 王新东. LiCl-KCl熔盐中锂在铝电极上的电极过程[J]. 电化学(中英文), 1998, 4(2): 205-209. |
[15] | 唐晓辉, 孙秀武, 李永舫, 方世璧. 醌-硫硫聚合物的合成及电化学性能的研究[J]. 电化学(中英文), 1998, 4(1): 30-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||