[1] |
Bernadet L, Moncasi C, Torrell M, Tarancón A. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes[J]. Int. J. Hydrogen Energy, 2020, 45(28): 14208-14217.
doi: 10.1016/j.ijhydene.2020.03.144
URL
|
[2] |
Rashid M D, Al Mesfer M K, Naseem H, Danish M. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis[J]. Int. J. Eng. Adv. Techno., 2015, 4: 2249-8958.
|
[3] |
Nechache A, Hody S. Alternative and innovative solid oxide electrolysis cell materials: A short review[J]. Renew. Sust. Energ. Rev., 2021, 149: 111322.
doi: 10.1016/j.rser.2021.111322
URL
|
[4] |
Hauch A, Brodersen K, Chen M, Mogensen M B. Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability[J]. Solid State Ion., 2016, 293: 27-36.
doi: 10.1016/j.ssi.2016.06.003
URL
|
[5] |
Padinjarethil A, Hagen A. Identification of degradation parameters in SOC using in-situ and ex-situ approaches[J]. ECS Trans., 2021, 103(1): 1069-1082.
doi: 10.1149/10301.1069ecst
|
[6] |
Sciazko A, Shimura T, Komatsu Y, Shikazono N. Ni-GDC and Ni-YSZ electrodes operated in solid oxide electrolysis and fuel cell modes[J]. J. Therm. Sci. Techno., 2021, 16(1): 20-00242.
|
[7] |
Zhang W Q, Yu B. Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. J. Electrochem., 2020, 26(2): 212-229.
|
[8] |
Wang Y Q. Co-electrolysis of H2O/CO2 in solid oxide electrolytic cell: A review[J]. Shandong Chem. Ind., 2019, 48(10): 90-91.
|
[9] |
Sarantaridis D, Atkinson A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review[J]. Fuel Cells, 2007, 7(3): 246-258.
doi: 10.1002/fuce.v7:3
URL
|
[10] |
Ettler M, Timmermann H, Malzbender J, Weber A, Menzler N H. Durability of Ni anodes during reoxidation cycles[J]. J. Power Sources, 2010, 195(17): 5452-5467.
doi: 10.1016/j.jpowsour.2010.03.049
URL
|
[11] |
Ivers-Tiffée E, Weber A, Herbstritt D. materials and technologies for SOFC-components[J]. J. Eur. Ceram. Soc., 2001, 21(10): 1805-1811.
doi: 10.1016/S0955-2219(01)00120-0
URL
|
[12] |
Zhao K, Cheng G, Hu S, Ha S, Norton M G, Chen M, Chen D, Xu Q, Kim B H. NiMo-calcium-doped ceria catalysts for inert-substrate-supported tubular solid oxide fuel cells running on isooctane[J]. Int. J. Hydrogen Energy, 2020, 45(53): 29367-29378.
|
[13] |
Zhao K, Kim B H, Xu Q, Ahn B G. Performance improvement of inert-substrate-supported tubular single cells via microstructure modification[J]. J. Power Sources, 2015, 274: 799-805.
doi: 10.1016/j.jpowsour.2014.10.111
URL
|
[14] |
Zou J Z, Xiong H W, Huang Y J, Zhou K C, Zhang D. Porosity control and compressive strength of porous zirconia prepared by freeze casting[J]. Chin. J. Nonferrous Met., 2021, 31(08): 2059-2068.
|
[15] |
Ni C, Cassidy M, Irvine J T S. Image analysis of the porous yttria-stabilized zirconia (YSZ) structure for a lanthanum ferrite-impregnated solid oxide fuel cell (SOFC) electrode[J]. J. Eur. Ceram. Soc., 2018, 38(16): 5463-5470.
doi: 10.1016/j.jeurceramsoc.2018.08.026
URL
|
[16] |
Möller P, Kanarbik R, Kivi I, Nurk G, Lust E. Influence of microstructure on the electrochemical behavior of LSC cathodes for intermediate temperature SOFC[J]. J. Electrochem. Soc., 2013, 160(11): F1245-F1253.
doi: 10.1149/2.037311jes
URL
|
[17] |
Hedayat N, Du Y, Ilkhani H. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods[J]. Renew. Sust. Energ. Rev., 2017, 77: 1221-1239.
doi: 10.1016/j.rser.2017.03.095
URL
|
[18] |
Grahl-Madsen L, Larsen P H, Bonanos N, Engell J, Linderoth S. mechanical strength and electrical conductivity of Ni-YSZ cermets fabricated by viscous processing[J]. J. Mater. Sci., 2006, 41(4): 1097-1107.
doi: 10.1007/s10853-005-3647-3
URL
|
[19] |
Mahmood A, Bano S, Yu J H, Lee K H. Performance evaluation of SOEC for CO2/H2O co-electrolysis: Considering the effect of cathode thickness[J]. J. CO2 Util., 2019, 33: 114-120.
|
[20] |
Kim S D, Seo D W, Dorai A K, Woo S K. The effect of gas compositions on the performance and durability of solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2013, 38(16): 6569-6576.
doi: 10.1016/j.ijhydene.2013.03.115
URL
|
[21] |
Laguna-Bercero M A, Campana R, Larrea A, Kilner J A, Orera V M. Steam electrolysis using a microtubular solid oxide fuel cell[J]. J. Electrochem. Soc., 2010, 157(6): B852.
doi: 10.1149/1.3332832
URL
|
[22] |
Jin C, Yang C, Chen F. Characteristics of the hydrogen electrode in high temperature steam electrolysis process[J]. J. Electrochem. Soc., 2011, 158(10): B1217.
doi: 10.1149/1.3615992
URL
|
[23] |
Rinaldi G, Diethelm S. Van herle J. Steam and co-electrolysis sensitivity analysis on Ni-YSZ supported cells[J]. ECS Trans., 2015, 68(1): 3395-3406.
doi: 10.1149/06801.3395ecst
URL
|
[24] |
Kim-Lohsoontorn P, Kim Y M, Laosiripojana N, Bae J. Gadolinium doped ceria-impregnated nickel-yttria stabilised zirconia cathode for solid oxide electrolysis cell[J]. Int. J. Hydrogen Energy, 2011, 36(16): 9420-9427.
doi: 10.1016/j.ijhydene.2011.04.199
URL
|
[25] |
Liang M, Yu B, Wen M, Chen J, Xu J, Zhai Y. Preparation of NiO-YSZ composite powder by a combustion method and its application for cathode of SOEC[J]. Int. J. Hydrogen Energy, 2010, 35(7): 2852-2857.
doi: 10.1016/j.ijhydene.2009.05.006
URL
|