电化学(中英文) ›› 2022, Vol. 28 ›› Issue (3): 2108451. doi: 10.13208/j.electrochem.210845
所属专题: “电分析”专题文章
收稿日期:
2021-10-06
修回日期:
2021-12-04
出版日期:
2022-03-28
发布日期:
2021-12-18
通讯作者:
张立敏,田阳
E-mail:lmzhang@chem.ecnu.edu.cn;ytian@chem.ecnu.edu.cn
Yue Wang, Li-Min Zhang*(), Yang Tian*()
Received:
2021-10-06
Revised:
2021-12-04
Published:
2022-03-28
Online:
2021-12-18
Contact:
Li-Min Zhang, Yang Tian
E-mail:lmzhang@chem.ecnu.edu.cn;ytian@chem.ecnu.edu.cn
摘要:
发展脑内化学物质的高选择性长期稳定的传感分析方法,对于准确获取脑生理病理过程的动力学信息,精准区分复杂的脑疾病分子机制具有重要的研究意义。本文从三个方面综述了基于新型电化学探针分子设计的脑内高选择性长程活体分析方面的研究进展:(1)通过设计并合成新型的O2·-、H2Sn、Ca2+、K+等的特异性有机分子探针,合理将特异性化学信号转换为高选择性的电化学信号,建立了系列高选择性的非电化学活性分子的活体电化学分析策略;(2)系统研究了传统Au-S键、Au-Se键、Au-C≡C键三种分子组装方式的界面电化学行为差异,优化并建立了基于Au-C≡C功能化的高稳定性电化学传感界面,发展了高选择性、长期稳定的Fe2+实时活体分析方法;(3)通过合理地将高稳定分子组装策略和抗生物污染界面相结合,制备了高选择性高稳定性的可逆型Ca2+微电极阵列,实现了脑中风模型下鼠脑中不同脑区Ca2+长达60天的实时追踪,以及癫痫模型下不同脑区四种离子(Ca2+、Na+、K+及pH)的动态实时成像及动力学分析。最后,该综述针对目前脑活体分析时神经递质、氨基酸等重要生理物质的多脑区实时分析的难点及移动清醒动物的无线传感分析策略进行了简要的展望。
王越, 张立敏, 田阳. 基于电化学分子探针合理设计的高选择性长程活体分析[J]. 电化学(中英文), 2022, 28(3): 2108451.
Yue Wang, Li-Min Zhang, Yang Tian. Rational Design of Electrochemical Molecular Probes for Highly Selective and Long-Term Measurement In Vivo[J]. Journal of Electrochemistry, 2022, 28(3): 2108451.
Figure 1
(A) Developed electrochemical sensor with ratiometric signal output for the reliable assaying of O2·- concentrations in a normal rat brain and a diabetic rat brain upon cerebral ischemia. DPV curves observed at CFME/SWCNT/MB+ND for O2·- detection in the hippocampus of normal rat brain (B), and diabetic rat brain (C) under different ischemia time. Reproduced with permission of Ref. 36. Copyright 2021 Analytical Chemistry. (color on line)
Figure 2
(A) Working principle of MPS-1 and MHS-2 for simultaneous assaying of H2S and H2Sn in a live mouse brain and further investigation in the activation of the TRPA1 channel by H2Sn and H2S. (B) Typical DPVs obtained at CFME/mAu/MPS-1+MHS-1 in a mouse brain before (a) and after (b) MCAO for 2.0 h. (C) The levels of H2S, H2Sn and TRPA1 protein in hippocampus upon MACO with different hours. Reproduced with permission of Ref. 24. Copyright 2019 Angewandte Chemie-International Edition. (color on line)
Figure 3
(A) The synthetic route for FDCA molecule. (B) Assembly of the FDCA molecules onto CFME through three strategies to form CFME/Au/AT/FDCA, CFME/Au/AS/FDCA, and CFME/Au/PA/FDCA electrodes. (C) The representative SEM images of CFME/Au electrode and enlarged Au nanoparticles onto CFME and the working principle of the developed sensor for determination of Fe2+. Reproduced with permission of Ref. 41. Copyright 2020 Angewandte Chemie-International Edition. (color on line)
Figure 4
(A) Illustration for multi-fiber microarray and measurements in the mouse brain. (B) SEM images of DPACE (top) and EDACE (bottom). (C) EDX analysis images of the selected areas of Au (yellow) and GO (blue) on DPACE (top) and EDACE (bottom). (D) Fluorescence images of DPACE and EDACE after immersed in 20 mg·mL-1 FITC-BSA solution for 2 h. (E) Molecular structures of METH (left), M18C6 (middle) and MBAPTA (right), and the modification of three ligands onto electrode surfaces. (F) The potential changes (vs. Ag/AgCl) obtained at METH-E (left), M18C6-E (middle), and MBAPTA-E (right) with continuously increasing concentration of Ca2+ and decreasing concentration of Ca2+ in aCSF. Reproduced with permission of Ref. 26. Copyright 2021 Angewandte Chemie-International Edition. (color on line)
Figure 5
(A) Specific recognition molecules for K+, Na+, pH, and Ca2+. (B) Schematic structures of 5-channel ion selective microelectrode arrays (5-ISMEA) and 8-channel M-ISMEA (K-ISMEA, Ca-ISMEA, Na-ISMEA or H-ISMEA). (C) LFP signals recorded in a live rat brain upon seizure, and the developed ECPM for real-time mapping and simultaneous quantification of multi-ions in the brain of a freely moving rat. (D) Potential responses of 5-ISMEA toward KCl, NaCl, CaCl2, and HCl in 0.1 mol·L-1 Tris-buffer. (E) 3D surface plots of potential separation (ΔEISE) or K+, Na+, Ca2+, pH responses of KISME, Na-ISME, Ca-ISME, and H-ISME as a function of one kind of ion and the other three ions. Reproduced with permission of Ref. 25. Copyright 2020 Angewandte Chemie-International Edition. (color on line)
[1] |
Zhang M N, Yu P, Mao L Q. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry[J]. Acc. Chem. Res., 2012, 45(4):533-543.
doi: 10.1021/ar200196h URL |
[2] |
Zhang L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Acc. Chem. Res., 2018, 51(3):688-696.
doi: 10.1021/acs.accounts.7b00543 URL |
[3] | Qiang Y, Artoni P, Seo K J, Culaclii S, Hogan V, Zhao X Y, Zhong Y D, Han X, Wang p M, Lo Y K, Li Y M, Patel H A, Huang Y F, Sambangi A, Chu J S V, Liu W T, Fagiolini M. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain[J]. Sci. Adv., 2018, 4(9): eaat0626. |
[4] |
Tsai D, Sawyer D, Bradd A, Yuste R, Shepard K L. A very large-scale microelectrode array for cellular-resolution electrophysiology[J]. Nat. Commun., 2017, 8:1802.
doi: 10.1038/s41467-017-02009-x URL |
[5] |
Zhu W Y, Gu C Y, Dunevall J, Ren L, Zhou X M, Ewing A G. Combined amperometry and electrochemical cytometry reveal differential effects of cocaine and methylphen-idate on exocytosis and the fraction of chemical release[J]. Angew. Chem. Int. Ed., 2019, 58(13):4238-4242.
doi: 10.1002/anie.201813717 URL |
[6] |
Liu Y L, Huang W H. Stretchable electrochemical sensors for cell and tissue detection[J]. Angew. Chem. Int. Ed., 2021, 60(6):2757-2767.
doi: 10.1002/anie.202007754 URL |
[7] |
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical sensing platforms based on organic thin-film transistors functionalized with artificial receptors[J]. ACS Sens., 2019, 4(10):2571-2587.
doi: 10.1021/acssensors.9b01114 URL |
[8] |
Li L P, Liu W Y, Dong H Y, Gui Q Y, Hu Z Q, Li Y Y, Liu J P. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices[J]. Adv. Mater., 2021, 33(13):2004959.
doi: 10.1002/adma.202004959 URL |
[9] | Chai X L, Zhou X G, Zhu A W, Zhang L M, Qin Y, Shi G Y, Tian Y. A two-channel ratiometric electrochemical biosensor for in vivo monitoring of copper ions in a rat brain using gold truncated octahedral microcages[J]. An-gew. Chem. Int. Ed., 2013, 52(31):8129-8133. |
[10] |
Zhou J, Zhang L M, Tian Y. Micro electrochemical pH sensor applicable for real-time ratiometric monitoring of pH values in rat brains[J]. Anal. Chem., 2016, 88(4):2113-2118.
doi: 10.1021/acs.analchem.5b03634 pmid: 26768309 |
[11] |
Zhou J, Liao C A, Zhang L M, Wang Q G, Tian Y. Mole-cular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells[J]. Anal. Chem., 2014, 86(9):4395-4401.
doi: 10.1021/ac500231e pmid: 24716876 |
[12] |
Liu H Q, Tian Y, Xia P P. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors[J]. Langmuir, 2008, 24(12):6359-6366.
doi: 10.1021/la703587x URL |
[13] |
Li X G, Liu Y, Zhu A W, Luo Y P, Deng Z F, Tian Y. Real-time electrochemical monitoring of cellular H2O2 integrated with in situ selective cultivation of living cells based on dual functional protein microarrays at Au-TiO2 surfaces[J]. Anal. Chem., 2010, 82(15):6512-6518.
doi: 10.1021/ac100807c URL |
[14] |
Deng Z F, Rui Q, Yin X, Liu H Q, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase[J]. Anal. Chem., 2008, 80(15):5839-5846.
doi: 10.1021/ac800213x URL |
[15] |
Wang Z, Liu D, Gu H, Zhu A W, Tian Y, Shi G Y. NTA-modified carbon electrode as a general relaying substrate to facilitate electron transfer of SOD: application to in vivo monitoring of O2·- in a rat brain[J]. Biosens. Bioelectron., 2013, 43:101-107.
doi: 10.1016/j.bios.2012.10.071 URL |
[16] |
Jiang Y M, Xiao X, Li C C, Luo Y, Chen S, Shi G Y, Han K, Gu H. Facile ratiometric electrochemical sensor for in vivo/online repetitive measurements of cerebral ascorbic acid in brain microdiaysate[J]. Anal. Chem., 2020, 92(5):3981-3989.
doi: 10.1021/acs.analchem.9b05484 URL |
[17] |
Jo A, Do H, Jhon G J, Suh M, Lee Y. Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain[J]. Anal. Chem., 2011, 83(21):8314-8319.
doi: 10.1021/ac202225n URL |
[18] |
Li S, Zhu A W, Zhu T, Zhang J Z H, Tian Y. Single bio-sensor for simultaneous quantification of glucose and pH in a rat brain of diabetic model using both current and potential outputs[J]. Anal. Chem., 2017, 89(12):6656-6662.
doi: 10.1021/acs.analchem.7b00881 URL |
[19] |
Shao X L, Gu H, Wang Z, Chai X L, Tian Y, Shi G Y. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface[J]. Anal. Chem. 2013, 85(1):418-425.
doi: 10.1021/ac303113n URL |
[20] |
Xiao T F, Wu F, Hao J, Zhang M N, Yu P, Mao L Q. In vivo analysis with electrochemical sensors and biosensors[J]. Anal. Chem., 2017, 89(1):300-313.
doi: 10.1021/acs.analchem.6b04308 URL |
[21] |
Liu W, Dong H, Zhang L M, Tian Y. Development of an efficient biosensor for the in vivo monitoring of Cu+ and pH in the brain: rational design and synjournal of recognition molecules[J]. Angew. Chem. Int. Ed., 2017, 56(51):16328-16332.
doi: 10.1002/anie.201710863 URL |
[22] |
Luo Y P, Zhang L M, Liu W, Yu Y Y, Tian Y. A single biosensor for evaluating the levels of copper ion and L-cysteine in a live rat brain with Alzheimer's Disease[J]. Angew. Chem. Int. Ed., 2015, 54(47):14053-14056.
doi: 10.1002/anie.201508635 URL |
[23] |
Liu L, Zhao F, Liu W, Zhu T, Zhang J Z H, Chen C, Dai Z H, Peng H S, Huang J L, Hu Q, Bu W B, Tian Y. An electrochemical biosensor with dual signal outputs: toward simultaneous quantification of pH and O2 in the brain upon ischemia and in a tumor during cancer starvation therapy[J]. Angew. Chem. Int. Ed., 2017, 56(35):10471-10475.
doi: 10.1002/anie.201705615 pmid: 28643445 |
[24] |
Dong H, Zhou Q, Zhang L M, Tian Y. Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain[J]. Angew. Chem. Int. Ed., 2019, 58(39):13948-13953.
doi: 10.1002/anie.201907210 pmid: 31322310 |
[25] |
Zhao F, Liu Y D, Dong H, Feng S Q, Shi G Y, Lin L N, Tian Y. An electrochemophysiological microarray for real-time monitoring and quantification of multiple ions in the brain of a freely moving rat[J]. Angew. Chem. Int. Ed., 2020, 59(26):10426-10430.
doi: 10.1002/anie.202002417 pmid: 32190959 |
[26] |
Liu Y D, Liu Z C, Zhao F, Tian Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angew. Chem. Int. Ed., 2021, 60(26):14429-14437.
doi: 10.1002/anie.202102833 URL |
[27] |
Hu B, Kong F P, Gao X N, Jiang L L, Li X F, Gao W, Xu K H, Tang B. Avoiding thiol compound interference: a nanoplatform based on high-fidelity Au-Se bonds for biological applications[J]. Angew. Chem. Int. Ed., 2018, 57(19):5306-5309.
doi: 10.1002/anie.201712921 URL |
[28] |
Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N J. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups[J]. J. Am. Chem. Soc., 2013, 135(9):3319-3322.
doi: 10.1021/ja3106434 URL |
[29] |
Liu X M, Xiao T F, Wu F, Shen M Y, Zhang M N, Yu H H, Mao L Q. Ultrathin cell-membrane-mimic phosphorylcholine polymer film coating enables large improvements for in vivo electrochemical detection[J]. Angew. Chem. Int. Ed., 2017, 56(39):11802-11806.
doi: 10.1002/anie.201705900 URL |
[30] |
Bhat A H, Dar K B, Anees S, Zargar M A, Masood A, Sofi M A, Ganie S A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight[J]. Biomed. Pharmacother., 2015, 74:101-110.
doi: 10.1016/j.biopha.2015.07.025 URL |
[31] |
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J]. Redox. Biol., 2018, 14:450-464.
doi: S2213-2317(17)30726-7 pmid: 29080524 |
[32] |
Rahman M A, Kothalam A, Choe E S, Won M S, Shim Y B. Stability and sensitivity enhanced electrochemical in vivo superoxide microbiosensor based on covalently co-immobilized lipid and cytochrome c[J]. Anal. Chem., 2012, 84(15):6654-6660.
doi: 10.1021/ac301086m URL |
[33] |
Tian Y, Mao L, Okajima T, Ohsaka T. Superoxide dismutase-based third-generation biosensor for superoxide anion[J]. Anal. Chem., 2002, 74(10):2428-2434.
doi: 10.1021/ac0157270 URL |
[34] |
Deng Z F, Rui Q, Yin X, Liu H Q, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase[J]. Anal. Chem., 2008, 80(15):5839-5846.
doi: 10.1021/ac800213x URL |
[35] |
Chen X J J, West A C, Cropek D M, Banta S. Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c[J]. Anal. Chem., 2008, 80(24):9622-9629.
doi: 10.1021/ac800796b URL |
[36] |
Huang S Q, Zhang L M, Dai L Y, Wang Y Y, Tian Y. Nonenzymatic electrochemical sensor with ratiometric signal output for selective determination of superoxide anion in rat brain[J]. Anal. Chem., 2021, 93(13):5570-5576.
doi: 10.1021/acs.analchem.1c00151 URL |
[37] |
Yadav P K, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic M R, Banerjee R. Biosynjournal and reactivity of cysteine persulfides in signaling[J]. J. Am. Chem. Soc., 2016, 138(1):289-299.
doi: 10.1021/jacs.5b10494 URL |
[38] |
Mishanina A V, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways[J]. Nat. Chem. Biol., 2015, 11(7):457-464.
doi: 10.1038/nchembio.1834 pmid: 26083070 |
[39] |
Yu B C, Zheng Y Q, Yuan Z N, Li S S, Zhu H, De la Cruz L K, Zhang J, Ji K L, Wang S M, Wang B H. Toward direct protein S-persulfidation: a prodrug approach that directly delivers hydrogen persulfide[J]. J. Am. Chem. Soc., 2018, 140(1):30-33.
doi: 10.1021/jacs.7b09795 URL |
[40] |
Wang S J, Liu X M, Zhang M N. Reduction of amminer-uthenium(III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide[J]. Anal. Chem., 2017, 89(10):5382-5388.
doi: 10.1021/acs.analchem.7b00069 URL |
[41] |
Zhang C P, Liu Z C, Zhang L M, Zhu A M, Liao F M, Wan J J, Zhou J, Tian Y. A robust Au-C≡C functionalized surface: toward real-time mapping and accurate quantification of Fe2+ in the brains of live AD mouse models[J]. Angew. Chem. Int. Ed., 2020, 59(46):20499-20507.
doi: 10.1002/anie.202006318 URL |
[42] |
Li X C, Ren L, Dunevall J, Ye D X, White H S, Edwards M A, Ewing A G. Nanopore opening at flat and nanotip conical electrodes during vesicle impact electrochemical cytometry[J]. ACS Nano, 2018, 12(3):3010-3019.
doi: 10.1021/acsnano.8b00781 URL |
[1] | 刘原东, 李佳润, 张立敏, 田阳. 基于线性范围可调的适配体功能化微电极的鼠脑中钾离子的活体分析[J]. 电化学(中英文), 2023, 29(6): 2218004-. |
[2] | 徐聪, 江迎, 于萍, 毛兰群. 脑神经电化学研究[J]. 电化学(中英文), 2022, 28(3): 2108551-. |
[3] | 张 悦, 冯涛涛, 纪文亮, 张美宁. L-半胱氨酸和胱胺共自组装膜活体检测抗坏血酸[J]. 电化学(中英文), 2019, 25(3): 400-408. |
[4] | 周 奇, 张立敏, 田 阳. 非电活性分子的活体电化学分析进展[J]. 电化学(中英文), 2019, 25(2): 160-171. |
[5] | 关利浩, 王 超, 张 望, 蔡雨露, 李 凯, 林雨青. 快捷两步法制备金纳米电极用于活体多巴胺检测[J]. 电化学(中英文), 2019, 25(2): 244-251. |
[6] | 陈莉, 刘帅, 李棉刚, 苏建加, 颜佳伟, 毛秉伟. Au(111)/咪唑基离子液体界面结构研究:阳离子侧链长度的影响[J]. 电化学(中英文), 2018, 24(5): 511-516. |
[7] | 彭瑾,李棉刚,谢立强,颜佳伟,毛秉伟. Pt(100)/离子液体OMIPF6界面结构的STM研究[J]. 电化学(中英文), 2016, 22(6): 596-601. |
[8] | 宋平, 阮明波, 刘京, 冉光钧, 徐维林. 燃料电池非铂基氧还原电催化剂的最新研究进展[J]. 电化学(中英文), 2015, 21(2): 130-137. |
[9] | 张笑,钟赟鑫,颜佳伟*,毛秉伟*. Au(111)-离子液体界面层状结构与温度关联的原位AFM力曲线研究[J]. 电化学(中英文), 2014, 20(4): 295-301. |
[10] | 周道民, Robert Greenberg. 与生物医学植入器件中的神经电刺激过程相关的电化学研究(英文)[J]. 电化学(中英文), 2011, 17(3): 249-262. |
[11] | 赵刘斌, 吴德印, 任斌, 田中群, . 电化学界面SERS光谱的密度泛函理论研究[J]. 电化学(中英文), 2010, 16(3): 334-342. |
[12] | 任斌,刘峰名,林旭锋,田中群. 用于电化学界面研究的共焦显微拉曼光谱技术(英文)[J]. 电化学(中英文), 2001, 7(1): 41-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||