电化学(中英文) ›› 2022, Vol. 28 ›› Issue (3): 2108461. doi: 10.13208/j.electrochem.210846
所属专题: “下一代二次电池”专题文章; “表界面”专题文章
宋亚杰1, 孙雪1, 任丽萍1, 赵雷1,2, 孔凡鹏1,*(), 王家钧1,*()
收稿日期:
2021-10-17
修回日期:
2021-12-04
出版日期:
2022-03-28
发布日期:
2021-12-18
Ya-Jie Song1, Xue Sun1, Li-Ping Ren1, Lei Zhao1,2, Fan-Peng Kong1,*(), Jia-Jun Wang1,*()
Received:
2021-10-17
Revised:
2021-12-04
Published:
2022-03-28
Online:
2021-12-18
Contact:
*Fan-Peng Kong: Tel: (86-451) 86403807, E-mail: fpkong@hit.edu.cn;
Jia-Jun Wang: Tel: (86-451) 86403807, E-mail: jiajunhit@hit.edu.cn
摘要:
电动汽车的快速发展迫切需要高能量密度的电池。近年来,金属空气电池由于其超高的理论能量密度,在工业和学术领域引起了广泛的关注。然而,其副反应严重、能量效率低、循环寿命有限等诸多缺点严重阻碍了其实际应用的可行性。了解电池反应机理并进一步制定有效的策略有利于金属-空气电池的实际应用。在过去十年中,先进的表征技术加速了金属空气电池的发展。特别是基于同步加速器的表征技术因其无损检测能力和高分辨率已被广泛应用于金属空气电池的机理理解。在这篇综述中,我们系统地总结了各种用于分析金属空气电池局部结构和化学特性的同步辐射表征技术,特别关注于这些先进的表征技术如何帮助理解电池降解机理和优化策略的本质。本进展报告旨在强调同步辐射表征在金属空气电池机理理解的关键作用。
宋亚杰, 孙雪, 任丽萍, 赵雷, 孔凡鹏, 王家钧. 同步辐射表征技术在金属空气电池研究中的应用[J]. 电化学(中英文), 2022, 28(3): 2108461.
Ya-Jie Song, Xue Sun, Li-Ping Ren, Lei Zhao, Fan-Peng Kong, Jia-Jun Wang. Synchrotron X-Rays Characterizations of Metal-Air Batteries[J]. Journal of Electrochemistry, 2022, 28(3): 2108461.
Figure 2
(A) Schematic of the diffraction process based on Bragg's law. Reproduced with permission of Ref.[30], copyright 2020 Wiley-VCH. (B) Synchrotron radiation XRD test device. Reproduced with permission of Ref.[37], copyright 2016 American Chemical Society. (C) Schematic diagram of in situ SXRD test and battery structure. Reproduced with permission of Ref.[38], copyright 2015 Nature Publishing Group. (color on line)
Table 1
Summary of synchrotron X-ray technology for metal-air cell research.
Technique | Information | Sample Property | Advantage | Limitation |
---|---|---|---|---|
SXRD | Structure lattice plane | Contains crystal structure | Structural Analysis | Does not work for noncrystalline samples |
SRPES | Chemistry | Solids, liquids | Chemical composition analysis | Low spatial resolution |
XAFS | Coordination and valence, etc. | Solids, liquids, gases | Microstructure analysis Mechanistic analysis | The information provided is the average structure |
STXM | Elemental (including light elements) | Solids | Light-element mapping Chemical composition distribution | Thin sample, vacuum chamber |
SR CT | 2D/3D imaging | Contains solidphase | Morphological evolution Product distribution | Weak image contrast for light elements |
Figure 7
(A) In situ synchrotron X-ray tomographic technique investigation of electrochemical and morphological of Li-metal anode. Reproduced with permission of Ref.[58], copyright 2019 American Chemical Society. (B) Synchrotron X-ray phase-contrast tomographic observation on morphological evolution of LMS. Reproduced with permission of Ref.[64], copyright 2016 American Chemical Society. (C) In situ synchrotron study of Li-air system under cycling process. Reproduced with permission of Ref.[38], copyright 2013 Nature Publishing Group. (color on line)
Figure 8
(A) Operando SXRD characterization of discharge product with LiBr as RMs. Reproduced with permission of Ref.[68], copyright 2021 American Chemical Society. (B) O K-edge XANES spectra and STXM images of the discharge products. Reproduced with permission of Ref.[69], copyright 2017 American Chemical Society. (C) STXM images of the discharge particles and average O K-edge XANES spectra of the same samples. Reproduced with permission of Ref.[70], copyright 2017 Elsevier. (color on line)
Figure 9
(A) In situ synchrotron XRD patterns and XANES of the Co@CoOx catalysts. Reproduced with permission of Ref.[74], copyright 2020 Wiley-VCH. (B) X-ray Nanocomputed Tomography in Zernike Phase Contrast of the cathode. Reproduced with per-mission of Ref.[76], copyright 2020 American Chemical Society. (C) STXM optical density images and the corresponding XANES spectra of C, Cl, and O distributions. Reproduced with permission of Ref.[77], copyright 2020 Elsevier. (D) STXM images of carbon-coated Au TEM grid after being fully discharged in a Li-air cell. Reproduced with permission of Ref.[78], copyright 2015 American Chemical Society. (color on line)
Figure 10
(A) Schematic diagram of a typical rechargeable non-aqueous Na-air battery. Reproduced with permission of Ref.[80], copyright 2018 Wiley-VCH. (B) Electronic configuration of the superoxide (top) and peroxide (bottom) anions. Reproduced with permission of Ref.[82], copyright 2018 American Chemical Society. (color on line)
Figure 11
(A) XAFS of CoO/CoP heterostructure (top two pictures) and in situ SXRD of discharge process (bottom two pictures). Reproduced with permission of Ref.[93], copyright 2018 American Chemical Society. (B) K-edge XANES of O and Na in TEY and FLY modes. Reproduced with permission of Ref.[95], copyright 2015 American Chemical Society. (C) SR X-ray CT with pure sodium metal (top three pictures) and Na@CC symmetric battery (top three pictures). Reproduced with permission of Ref.[96], copyright 2021 Elsevier. (color on line)
Figure 12
(A) O K-edge and N K-edge XAS of NCNT-PAN air electrode at different charge and discharge states. Reproduced with permission of Ref.[101], copyright 2019 Wiley-VCH. (B) FY and TEY modes of O K-edge XANES. Reproduced with permission of Ref.[102], copyright 2017 American Chemical Society. (C) Design drawing of Swagelok battery for synchrotron X-ray tomography. (D) The particle size distribution in the selected area inside the cathode is analyzed by CT. Reproduced with permission of Ref.[103], copyright 2016 Nature Publishing Group. (E) Absorbance image at 525.7 eV of a cubic discharge particle by STXM. (F) O K-edge XANES spectra of the Multivariate Curve Resolution (MCR) reconstructed components in the discharged particle. Reproduced with permission of Ref.[104], copyright 2017 Elsevier. (color on line)
Figure 14
(A) Integrated intensities of the red Zn (102) and black ZnO (002) reflections from battery Zn1 over time at different positions in the anode starting. Reproduced with permission of Ref.[112], copyright 2019 Elsevier. (B-C) SR X-ray CT of Zn dendrite growth with (B) or without (C) a separator. Reproduced with permission of Ref.[113], copyright 2019 Elsevier. (color on line)
Figure 16
(A) K-edge XANES spectra and EXAFS of Co-POC. Reproduced with permission of Ref.[118], copyright 2019 Wiley-VCH. (B) Fe-N4 SAs/NPC. Reproduced with permission of Ref.[119], copyright 2018 Wiley-VCH. (C) (Fe, Co)/CNT. Reproduced with permission of Ref.[121], copyright 2018 Elsevier. (D) CoNi-SAs/NC. Reproduced with permission of Ref.[122], copyright 2019 Wiley-VCH. (color on line)
[1] | Abraham D. Advances in lithium-ion battery research and technology[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(3):18-19. |
[2] | Thackeray M M, Thomas J O, Whittingham M S. Science and applications of mixed conductors for lithium batteries[J]. MRS Bull., 2000, 25(3):39-46. |
[3] | Yang Y F, Yang J L, Pan F, Cui Y. From intercalation to alloying chemistry: Structural design of silicon anodes for the next generation of lithium-ion batteries[J]. Chinese J. Struct. Chem., 2020, 39(1):16-19. |
[4] |
Shao Y Q, Jiang Z S, Zhang Q Q, Guan J Q. Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction[J]. ChemSusChem, 2019, 12(10):2133-2146.
doi: 10.1002/cssc.201900060 URL |
[5] |
Dabill D W, Walsh P T. The effect of hyperbaric pressure on catalytic and electrochemical gas sensors[J]. Sens. Actuators B Chem., 1996, 30(2):111-119.
doi: 10.1016/0925-4005(95)01757-M URL |
[6] |
Cao R G, Lee J S, Liu M L, Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater., 2012, 2(7):816-829.
doi: 10.1002/aenm.201200013 URL |
[7] |
Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions[J]. J. Power Sources, 2010, 195(18):6187-6191.
doi: 10.1016/j.jpowsour.2009.11.023 URL |
[8] |
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23):11636-11682.
doi: 10.1021/cr500192f pmid: 25390643 |
[9] |
Yin W W, Fu Z W. The potential of Na-air batteries[J]. ChemCatChem, 2017, 9(9):1545-1553.
doi: 10.1002/cctc.201600646 URL |
[10] |
Otaegui L, Rodriguez-Martinez L M, Wang L, Laresgoiti A, Tsukamoto H, Han M H, Tsai C L, Laresgoiti I, Lopez C M, Rojo T. Performance and stability of a liquid anode high-temperature metal-air battery[J]. J. Power Sources, 2014, 247:749-755.
doi: 10.1016/j.jpowsour.2013.09.029 URL |
[11] |
Crowther O, Keeny D, Moureau D M, Meyer B, Salomon M, Hendrickson M. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane[J]. J. Power Sources, 2012, 202:347-351.
doi: 10.1016/j.jpowsour.2011.11.024 URL |
[12] |
Jung K N, Hwang S M, Park M S, Kim K J, Kim J G, Dou S X, Kim J H, Lee J W. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries[J]. Sci. Rep., 2015, 5:7665.
doi: 10.1038/srep07665 URL |
[13] |
Bai J J, Lu H M, Cao Y, Li X D, Wang J R. A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries[J]. RSC Adv., 2017, 7(49):30603-30609.
doi: 10.1039/C7RA05035F URL |
[14] |
Liu J T, Xie Y, Gao Q, Cao F H, Qin L, Wu Z Y, Zhang W, Li H, Zhang C L. 1D MOF-derived N-doped porous carbon nanofibers encapsulated with Fe3C nanoparticles for efficient bifunctional electrocatalysis[J]. Eur. J. Inorg. Chem., 2020, 2020(6):581-589.
doi: 10.1002/ejic.201901244 URL |
[15] |
Zhao N, Li C L, Guo X X. Long-life Na-O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential[J]. Phys. Chem. Chem. Phys., 2014, 16(29):15646-15652.
doi: 10.1039/c4cp01961j URL |
[16] |
Wang L G, Dai A V, Xu W Q, Lee S, Cha W, Harder R, Liu T C, Ren Y, Yin G P, Zuo P J, Wang J, Lu J, Wang J J. Structural distortion induced by manganese activation in a lithium-rich layered cathode[J]. J. Am. Chem. Soc., 2020, 142(35):14966-14973.
doi: 10.1021/jacs.0c05498 URL |
[17] |
Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X H, Lee W K, Yao Y D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D, Wang J J. Surface regulation enables high stability of single-cry-stal lithium-ion cathodes at high voltage[J]. Nat. Commun., 2020, 11(1):3035.
doi: 10.1038/s41467-020-15541-0 URL |
[18] |
Sun N, Liu Q S, Cao Y, Lou S F, Ge M Y, Xiao X H, Lee W K, Gao Y Z, Yin G P, Wang J J, Sun X L. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angew. Chem. Int. Ed., 2019, 58(51):18647-18653.
doi: 10.1002/anie.201910993 URL |
[19] |
Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, Wang J J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nat. Commun., 2020, 11(1):5700.
doi: 10.1038/s41467-020-19528-9 URL |
[20] |
Wang J J, Chen-Wiegart Y C K, Eng C, Shen Q, Wang J. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nat. Commun., 2016, 7:12372.
doi: 10.1038/ncomms12372 URL |
[21] |
Jacobsen C, Kirz J. X-ray microscopy with synchrotron radiation[J]. Nat. Struct. Biol., 1998, 5:650-653.
doi: 10.1038/1341 URL |
[22] |
Bodo G, Ghisellini G, Trussoni E. Diamagnetic effects in synchrotron sources[J]. Mon. Not. R. Astron. Soc., 1992, 255(4):694-700.
doi: 10.1093/mnras/255.4.694 URL |
[23] |
Herklotz M, Weiss J, Ahrens E, Yavuz M, Mereacre L, Kiziltas-Yavuz N, Drager C, Ehrenberg H, Eckert J, Fauth F, Giebeler L, Knapp M. A novel high-throughput setup for in situ powder diffraction on coin cell batteries[J]. J. Appl. Crystallogr., 2016, 49:340-345.
doi: 10.1107/S1600576715022165 URL |
[24] |
Wang J J, Chen-Wiegart Y C K, Wang J. In situ three-di-mensional synchrotron X-ray nanotomography of the (De)lithiation processes in tin anodes[J]. Angew. Chem. Int. Ed., 2014, 53(17):4460-4464.
doi: 10.1002/anie.201310402 URL |
[25] |
Wang J J, Chen-Wiegart Y C K, Wang J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nat. Commun., 2014, 5:4570.
doi: 10.1038/ncomms5570 URL |
[26] |
Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv. Mater., 2021, 33(6):2000721.
doi: 10.1002/adma.202000721 URL |
[27] |
Lou S F, Yu Z J, Liu Q S, Wang H, Chen M, Wang J J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale[J]. Chem, 2020, 6(9):2199-2218.
doi: 10.1016/j.chempr.2020.06.030 URL |
[28] |
Wang L G, Wang J J, Zuo P J. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques[J]. Small Methods, 2018, 2(8):1700293.
doi: 10.1002/smtd.201700293 URL |
[29] |
Cao C T, Toney M F, Sham S K, Harder R, Shearing P R, Xiao X H, Wang J J. Emerging X-ray imaging technologies for energy materials[J]. Mater. Today, 2020, 34:132-147.
doi: 10.1016/j.mattod.2019.08.011 URL |
[30] |
Rahimabadi P S, Khodaei M, Koswattage K R. Review on applications of synchrotron-based X-ray techniques in materials characterization[J]. X-Ray Spectrom., 2020, 49(3):348-373.
doi: 10.1002/xrs.3141 URL |
[31] |
Paterson A, Stevens R. Phase analysis of sintered yttria-zirconia ceramics by X-ray diffraction[J]. J. Mater. Res., 1986, 1(2):295-299.
doi: 10.1557/JMR.1986.0295 URL |
[32] |
Scardi P, Leoni M, Cappuccio G, Sessa V, Terranova M L. Residual stress in polycrystalline diamond Ti6Al4Vsystems[J]. Diamond Relat. Mater., 1997, 6(5-7):807-811.
doi: 10.1016/S0925-9635(96)00605-X URL |
[33] |
Vink T J, Somers M A J, Daams J L C, Dirks A G. Stress, strain, and microstructure of sputter-deposited Mo thin-films[J]. J. Appl. Phys., 1991, 70(8):4301-4308.
doi: 10.1063/1.349108 URL |
[34] |
Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J, Kanno R. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction[J]. J. Am. Chem. Soc., 2010, 132(43):15268-15276.
doi: 10.1021/ja105389t pmid: 20939527 |
[35] | Wu C J, Hua W B, Zhang Z, Zhong B H, Yang Z G, Feng G L, Xiang W, Wu Z G, Guo X D. Design and synjournal of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries[J]. Adv. Sci. Lett., 2018, 5(9):1800519. |
[36] | Gonzalo E, Zarrabeitia M, Drewett N E, del Amo J M L, Rojo T. Sodium manganese-rich layered oxides: potential candidates as positive electrode for sodium-ion batteries[J]. Energy Stor. Mater., 2021, 34:682-707. |
[37] |
Gu X D, Reinspach J, Worfolk B J, Diao Y, Zhou Y, Yan H P, Gu K V, Mannsfeld S, Toney M F, Bao Z N. Compact roll-to-roll coater for in situ X-ray diffraction characterization of organic electronics printing[J]. ACS Appl. Mater. Interfaces, 2016, 8(3):1687-1694.
doi: 10.1021/acsami.5b09174 URL |
[38] |
Shui J L, Okasinski J S, Liu D J. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nat. Commun., 2013, 4:2255.
doi: 10.1038/ncomms3255 URL |
[39] |
Lupina G, Schroeder T, Dabrowski J, Wenger C, Mane A, Lippert G, Mussig H J, Hoffmann P, Schmeisser D. Praseodymium silicate layers with atomically abrupt interface on Si(100)[J]. Appl. Phys. Lett., 2005, 87(9):092901
doi: 10.1063/1.2032596 URL |
[40] | King G C, Yencha A J, Lopes M C A. Threshold photoelectron spectroscopy using synchrotron radiation[J]. Application of Accelerators in Research and Industry, 2001, 576:703-706. |
[41] |
Sun Z H, Liu Q H, Yao T, Yan W S, Wei S Q. X-ray absorption fine structure spectroscopy in nanomaterials[J]. Sci. China. Mater., 2015, 58(4):313-341.
doi: 10.1007/s40843-015-0043-4 URL |
[42] |
Fujikawa T, Rehr J J, Wada Y, Nagamatsu S. Approximate spherical wave Debye-Waller factors in EXAFS and XANES spectra[J]. J. Phys. Soc. Jpn., 1999, 68(4):1259-1268.
doi: 10.1143/JPSJ.68.1259 URL |
[43] |
Fornasini P, Grisenti R, Dapiaggi M, Agostini G. Local structural distortions in SnTe investigated by EXAFS[J]. J. Phys. Condens. Matter, 2021, 33(29):295404.
doi: 10.1088/1361-648X/ac0082 URL |
[44] | Husain H, Hariyanto B, Sulthonul M, Thamatkeng P, Pratapa S. Local structure examination of mineral-derived Fe2O3 powder by Fe K-edge EXAFS and XANES[C]//Proceedings of 5th International Conference on Advanced Materials Sciences and Technology. Makassar City, Indonesia, September 19-20, 2017. |
[45] | Naftel S J, Coulthard I, Hu Y, Sham T K, Zinke-Allmang M. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films[C]//Proceedings of Applications of Synchrotron Radiation Techniques to Materials Science IV. San Francisco City, United States of America, April 13-17, 1998. |
[46] | Yonemura T, Iihara J, Uemura S, Yamaguchi K, Niibe M. Development of the Surface-sensitive Soft X-ray Absorption Fine Structure Measurement Technique for the Bulk Insulator[C]//Proceedings of 12th International Conference on Synchrotron Radiation Instrumentation. New York City, United States of America, July 06-10, 2015. |
[47] |
Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S. X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC[J]. Sci. Rep., 2012, 2:831.
doi: 10.1038/srep00831 pmid: 23152937 |
[48] |
Hoffman C L, Nicholas S L, Ohnemus D C, Fitzsimmons J N, Sherrell R M, German C R, Heller M I, Lee J M, Lam P J, Toner B M. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15 degrees S[J]. Mar. Chem., 2018, 201:183-197.
doi: 10.1016/j.marchem.2018.01.011 URL |
[49] |
Li L S, Chen-Wiegart Y C K, Wang J J, Gao P, Ding Q, Yu Y S, Wang F, Cabana J, Wang J, Jin S. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging[J]. Nat. Commun., 2015, 6:6883.
doi: 10.1038/ncomms7883 URL |
[50] |
Tsai P C, Wen B H, Wolfman M, Choe M J, Pan M S, Su L, Thornton K, Cabana J, Chiang Y M. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy Environ. Sci., 2018, 11(4):860-871.
doi: 10.1039/C8EE00001H URL |
[51] | Elango R, Demortiere A, De Andrade V, Morcrette M, Seznec V. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Adv. Energy Ma-ter., 2018, 8(15):1703031. |
[52] |
Zhao C H, Wada T, De Andrade V, Gursoy D, Kato H, Chen-Wiegart Y C K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography[J]. Nano Energy, 2018, 52:381-390.
doi: 10.1016/j.nanoen.2018.08.009 URL |
[53] |
Sun L, Liu D X. Chemical activation of commercial CNTs with simultaneous surface deposition of manganese oxide nano flakes for the creation of CNTs-graphene supported oxygen reduction ternary composite catalysts applied in air fuel cell[J]. Appl. Surf. Sci., 2018, 447:518-527.
doi: 10.1016/j.apsusc.2018.04.025 URL |
[54] |
Wang Y Q, Yu B Y, Liu K, Yang X T, Liu M, Chan T S, Qiu X Q, Li J, Li W Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries[J]. J. Mater. Chem. A, 2020, 8(4):2131-2139.
doi: 10.1039/C9TA12171D URL |
[55] |
Kim T, Ohata Y, Kim J, Rhee C K, Miyawaki J, Yoon S H. Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal-air batteries: A fundamental reason[J]. Carbon, 2014, 80:698-707.
doi: 10.1016/j.carbon.2014.09.014 URL |
[56] |
de Vasconcelos G J Q, Miqueles E X, Costa G S R. Responsive alignment for X-ray tomography beamlines[J]. J. Synchrotron Radiat., 2018, 25:1774-1779.
doi: 10.1107/S1600577518012201 pmid: 30407189 |
[57] |
Morrell A P, Mosselmans J F W, Geraki K, Ignatyev K, Castillo-Michel H, Monksfield P, Warfield A T, Febbraio M, Roberts H M, Addison O, Martin R A. Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy[J]. J. Synchrotron Radiat., 2018, 25:1719-1726.
doi: 10.1107/S160057751801247X URL |
[58] |
Sun F, Gao R, Zhou D, Osenberg M, Dong K, Kardjilov N, Hilger A, Markotter H, Bieker P M, Liu X F, Manke I. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography[J]. ACS Energy Lett., 2019, 4(1):306-316.
doi: 10.1021/acsenergylett.8b02242 |
[59] |
Tan P, Jiang H R, Zhu X B, An L, Jung C Y, Wu M C, Shi L, Shyy W, Zhao T S. Advances and challenges in lithium-air batteries[J]. Appl. Energy, 2017, 204:780-806.
doi: 10.1016/j.apenergy.2017.07.054 URL |
[60] | Wang Y, Lu Y C. Nonaqueous lithium-oxygen batteries: Reaction mechanism and critical open questions[J]. Energy Stor. Mater., 2020, 28:235-246. |
[61] |
Yamaki J I, Tobishima S I, Sakurai Y, Saito K I, Hayashi K. Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes[J]. J. Appl. Electrochem., 1998, 28(2):135-140.
doi: 10.1023/A:1003270406759 URL |
[62] |
Takehara Z. Future prospects of the lithium metal anode[J]. J. Power Sources, 1997, 68(1):82-86.
doi: 10.1016/S0378-7753(96)02546-3 URL |
[63] |
Wang X F, Feng Z J, Huang J T, Deng W, Li X B, Zhang H S, Wen Z H. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127:149-157.
doi: 10.1016/j.carbon.2017.10.101 URL |
[64] |
Sun F, Zielke L, Markoetter H, Hilger A, Zhou D, Moroni R, Zengerle R, Thiele S, Banhart J, Manke I. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano, 2016, 10(8):7990-7997.
doi: 10.1021/acsnano.6b03939 pmid: 27463258 |
[65] |
Younesi R, Hahlin M, Edstrom K. Surface characterization of the carbon cathode and the lithium anode of Li-O2 batteries using LiClO4 or LiBOB salts[J]. ACS Appl. Mater. Interfaces, 2013, 5(4):1333-1341.
doi: 10.1021/am3026129 URL |
[66] |
Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K. Redox mediators for Li-O2 batteries: Status and perspectives[J]. Adv. Mater., 2018, 30(1):1704162.
doi: 10.1002/adma.201704162 URL |
[67] |
Zhang T, Liao K M, He P, Zhou H S. A self-defense redox mediator for efficient lithium-O2 batteries[J]. Energy Environ. Sci., 2016, 9(3):1024-1030.
doi: 10.1039/C5EE02803E URL |
[68] |
Cremasco L F, Anchieta C G, Nepel T C M, Miranda A N, Sousa B P, Rodella C B, Filho R M, Doubek G. Operando synchrotron XRD of bromide mediated Li-O2 battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(11):13123-13131.
doi: 10.1021/acsami.0c21791 URL |
[69] |
Landa-Medrano I, Olivares-Marin M, Bergner B, Pinedo R, Sorrentino A, Pereiro E, de Larramendi I R, Janek J, Rojo T, Tonti D. Potassium salts as electrolyte additives in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2017, 121(7):3822-3829.
doi: 10.1021/acs.jpcc.7b00355 URL |
[70] |
Olivares-Marin M, Sorrentino A, Pereiro E, Tonti D. Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy[J]. J. Power Sources, 2017, 359:234-241.
doi: 10.1016/j.jpowsour.2017.05.039 URL |
[71] |
Yao K P C, Risch M, Sayed S Y, Lee Y L, Harding J R, Grimaud A, Pour N, Xu Z C, Zhou J G, Mansour A, Barde F, Shao-Horn Y. Solid-state activation of Li2O2 oxidation kinetics and implications for Li-O2 batteries[J]. Energy Environ. Sci., 2015, 8(8):2417-2426.
doi: 10.1039/C5EE00967G URL |
[72] | Song M, Zhu D, Zhang L, Wang X F, Huang L H, Shi Q W, Mi R, Liu H, Mei J, Lau L W M, Chen Y G. Temperature dependence of charging characteristic of C-free Li2O2 cathode in Li-O2 battery[J]. J. Solid State Electro-chem., 2013, 17(7):2061-2069. |
[73] | Xu W, Viswanathan V V, Wang D Y, Towne S A, Xiao J, Nie Z M, Hu D H, Zhang J G. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes[J]. J. Power Sour-ces, 2011, 196(8):3894-3899. |
[74] |
Wang H, Kou R H, Jin Q, Liu Y Z, Yin F X, Sun C J, Wang L, Ma Z Y, Ren Y, Liu N, Chen B H. Boosting the oxygen reduction performance via tuning the synergy between metal core and oxide shell of metal-organic frameworks-derived Co@CoOx[J]. Chemelectrochem, 2020, 7(7):1590-1597.
doi: 10.1002/celc.202000038 URL |
[75] |
Gao R, Zhou D, Ning D, Zhang W J, Huang L, Sun F, Schuck G, Schumacher G, Hu Z B, Liu X F. Probing the self-boosting catalysis of LiCoO2 in Li-O2 battery with multiple in situ/operando techniques[J]. Adv. Funct. Mater., 2020, 30(28):2002223.
doi: 10.1002/adfm.202002223 URL |
[76] |
Su Z L, De Andrade V, Cretu S, Yin Y H, Wojcik M J, Franco A A, Demortiere A. X-ray nanocomputed tomography in zernike phase contrast for studying 3D morphology of Li-O2 battery electrode[J]. ACS Appl. Energy Mater., 2020, 3(5):4093-4102.
doi: 10.1021/acsaem.9b02236 URL |
[77] |
Zhao C T, Liang J W, Li X N, Holmes N, Wang C H, Wang J, Zhao F P, Li S F, Sun Q, Yang X F, Liang J N, Lin X T, Li W H, Li R Y, Zhao S Q, Huang H, Zhang L, Lu S G, Sun X L. Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li-O2 batteries[J]. Nano Energy, 2020, 75:105036.
doi: 10.1016/j.nanoen.2020.105036 URL |
[78] |
Olivares-Marin M, Sorrentino A, Lee R C, Pereiro E, Wu N L, Tonti D. Spatial distributions of discharged products of lithium-oxygen batteries revealed by synchrotron X-ray transmission microscopy[J]. Nano Lett., 2015, 15(10):6932-6938.
doi: 10.1021/acs.nanolett.5b02862 pmid: 26339872 |
[79] |
Younesi R, Urbonaite S, Edstrom K, Hahlin M. The cathode surface composition of a cycled Li-O2 battery: A photoelectron spectroscopy study[J]. J. Phys. Chem. C, 2012, 116(39):20673-20680.
doi: 10.1021/jp302168h URL |
[80] |
Sun B, Pompe C, Dongmo S, Zhang J Q, Kretschmer K, Schroder D, Janek J, Wang G X. Challenges for developing rechargeable room-temperature sodium oxygen batteries[J]. Adv. Mater. Technol., 2018, 3(9):1800110.
doi: 10.1002/admt.201800110 URL |
[81] |
Hartmann P, Bender C L, Vracar M, Durr A K, Garsuch A, Janek J, Adelhelm P. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nat. Mater., 2013, 12(3):228-232.
doi: 10.1038/nmat3486 pmid: 23202372 |
[82] |
Mekonnen Y S, Christensen R, Garcia-Lastra J M, Vegge T. Thermodynamic and kinetic limitations for peroxide and superoxide formation in Na-O2 batteries[J]. J. Phys. Chem. Lett., 2018, 9(15):4413-4419.
doi: 10.1021/acs.jpclett.8b01790 URL |
[83] |
Kim J, Lim H D, Gwon H, Kang K. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Phys. Chem. Chem. Phys., 2013, 15(10):3623-3629.
doi: 10.1039/c3cp43225d URL |
[84] |
Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6):3205-3211.
doi: 10.1002/anie.202012787 URL |
[85] |
Black R, Shyamsunder A, Adeli P, Kundu D, Murphy G K, Nazar L F. The nature and impact of side reactions in glyme-based sodium-oxygen batteries[J]. ChemSusChem, 2016, 9(14):1795-1803.
doi: 10.1002/cssc.201600034 URL |
[86] |
Lin X T, Sun F, Sun Q, Wang S Z, Luo J, Zhao C T, Yang X F, Zhao Y, Wang C H, Li R Y, Sun X L. O2/O2- crossover- and dendrite-free hybrid solid-state Na-O2 batteries[J]. Chem. Mater., 2019, 31(21):9024-9031.
doi: 10.1021/acs.chemmater.9b03266 URL |
[87] |
Zhang Y T, Ma L P, Zhang L Q, Peng Z Q. Identifying a stable counter/reference electrode for the study of aprotic Na-O2 batteries[J]. J. Electrochem. Soc., 2016, 163(7):A1270-A1274.
doi: 10.1149/2.0871607jes URL |
[88] |
Zhu Y M, Yang F, Guo M H, Chen L, Gu M. Real-time imaging of the electrochemical process in Na-O2 nano-batteries using Pt@CNT and Pt0.8Ir0.2@CNT air cathodes[J]. ACS Nano, 2019, 13(12):14399-14407.
doi: 10.1021/acsnano.9b07961 URL |
[89] |
Frith J T, Landa-Medrano I, de Larramendi I R, Rojo T, Owen J R, Garcia-Araez N. Improving Na-O2 batteries with redox mediators[J]. Chem. Commun., 2017, 53(88):12008-12011.
doi: 10.1039/C7CC06679A URL |
[90] |
Yang H, Sun J C, Wang H, Liang J, Li H X. A titanium dioxide nanoparticle sandwiched separator for Na-O2 batteries with suppressed dendrites and extended cycle life[J]. Chem. Commun., 2018, 54(32):4057-4060.
doi: 10.1039/C8CC00993G URL |
[91] |
Jia P, Yang T T, Liu Q N, Yan J T, Shen T D, Zhang L Q, Liu Y N, Zhao X X, Gao Z Y, Wang J, Tang Y F, Huang J Y. In-situ imaging Co3O4 catalyzed oxygen reduction and evolution reactions in a solid state Na-O2 battery[J]. Nano Energy, 2020, 77:105289.
doi: 10.1016/j.nanoen.2020.105289 URL |
[92] |
Shu C Z, Lin Y M, Zhang B S, Abd Hamid S B, Su D S. Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium-oxygen batteries[J]. J. Mater. Chem. A, 2016, 4(17):6610-6619.
doi: 10.1039/C6TA00901H URL |
[93] |
Wang J K, Gao R, Zheng L R, Chen Z J, Wu Z H, Sun L M, Hu Z B, Liu X F. CoO/CoP heterostructured nanosheets with an O-P interpenetrated interface as a bifunctional electrocatalyst for Na-O2 battery[J]. ACS Catal., 2018, 8(9):8953-8960.
doi: 10.1021/acscatal.8b01023 URL |
[94] |
Jin X, Li Y Y, Zhang S, Zhang J W, Shen Z H, Zhong C L, Cai Z Q, Hu C Q, Zhang H G. Ru single atoms induce surface-mediated discharge in Na-O2 batteries[J]. Chin. Chem. Lett., 2021, 33(1):491-496.
doi: 10.1016/j.cclet.2021.06.090 URL |
[95] |
Yadegari H, Banis M N, Xiao B W, Sun Q, Li X, Lushington A, Wang B Q, Li R Y, Sham T K, Cui X Y, Sun X L. Three-dimensional nanostructured air electrode for sodium-oxygen batteries: A mechanism study toward the cyclability of the cell[J]. Chem. Mater., 2015, 27(8):3040-3047.
doi: 10.1021/acs.chemmater.5b00435 URL |
[96] |
Liu H J, Osenberg M, Ni L, Hilger A, Chen L B, Zhou D, Dong K, Arlt T, Yao X Y, Wang X G, Manke I, Sun F. Sodiophilic and conductive carbon cloth guides sodium dendrite-free Na metal electrodeposition[J]. J. Energ. Chem., 2021, 61:61-70.
doi: 10.1016/j.jechem.2021.03.004 URL |
[97] | Ma M Y, Lu Y, Yan Z H, Chen J. In situ synjournal of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium-oxygen batteries[J]. Batteries & Supercaps, 2019, 2(8):663-667. |
[98] |
Luo W, Lin C F, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L B. Ultrathin surface coating enables the stable sodium metal anode[J]. Adv. Energy Mater., 2017, 7(2):1601526.
doi: 10.1002/aenm.201601526 URL |
[99] |
Sun B, Li P, Zhang J Q, Wang D, Munroe P, Wang C Y, Notten P H L, Wang G X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries[J]. Adv. Mater., 2018, 30(29):1801334.
doi: 10.1002/adma.201801334 URL |
[100] |
Lin X T, Sun Q, Yadegari H, Yang X F, Zhao Y, Wang C H, Liang J N, Koo A, Li R Y, Sun X L. On the cycling performance of Na-O2 cells: Revealing the impact of the superoxide crossover toward the metallic Na electrode[J]. Adv. Funct. Mater., 2018, 28(35):1801904.
doi: 10.1002/adfm.201801904 URL |
[101] |
Sun Q, Liu J, Xiao B W, Wang B O, Banis M, Yadegari H, Adair K R, Li R Y, Sun X L. Visualizing the oxidation mechanism and morphological evolution of the cubic-shaped superoxide discharge product in Na-air batteries[J]. Adv. Funct. Mater., 2019, 29(13):1808332.
doi: 10.1002/adfm.201808332 URL |
[102] | Morasch R, Kwabi D G, Tulodziecki M, Risch M, Zhang S Y, Yang S H. Insights into electrochemical oxidation of NaO2 in Na-O2 batteries via rotating ring disk and spectroscopic measurements[J]. ACS Appl. Mater. Inter-faces, 2017, 9(5):4374-4381. |
[103] |
Schroder D, Bender C L, Osenberg M, Hilger A, Manke I, Janek J. Visualizing current-dependent morphology and distribution of discharge products in sodium-oxygen battery cathodes[J]. Sci. Rep., 2016, 6:24288.
doi: 10.1038/srep24288 URL |
[104] |
Landa-Medrano I, Sorrentino A, Stievano L, de Larramendi I R, Pereiro E, Lezama L, Rojo T, Tonti D. Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy[J]. Nano Energy, 2017, 37:224-231.
doi: 10.1016/j.nanoen.2017.05.021 URL |
[105] |
Fu J, Cano Z P, Park M G, Yu A P, Fowler M, Chen Z W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Adv. Mater., 2017, 29(7):1604685.
doi: 10.1002/adma.201604685 URL |
[106] |
Lee C W, Sathiyanarayanan K, Eom S W, Kim H S, Yun M S. Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells[J]. J. Power Sources, 2006, 160(1):161-164.
doi: 10.1016/j.jpowsour.2006.01.070 URL |
[107] |
Shi X J, He B B, Zhao L, Gong Y S, Wang R, Wang H W. FeS2-CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries[J]. J. Power Sources, 2021, 482:228955.
doi: 10.1016/j.jpowsour.2020.228955 URL |
[108] |
Zhu J W, Li W Q, Li S H, Zhang J, Zhou H, Zhang C T, Zhang J A, Mu S C. Defective N/S-Codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air batteries[J]. Small, 2018, 14(21):1800563.
doi: 10.1002/smll.201800563 URL |
[109] |
Guo L M, Deng J A, Wang G Z, Hao Y A, Bi K, Wang X H, Yang Y. N, P-doped CoS2 embedded in TiO2 nano-porous films for Zn-air batteries[J]. Adv. Funct. Mater., 2018, 28(42):1804540.
doi: 10.1002/adfm.201804540 URL |
[110] | Wang K K, Lin Z S, Tang Y, Tang Z H, Tao C L, Qin D D, Tian Y. Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries[J]. Ele-ctrochim. Acta, 2021, 368:137584. |
[111] |
Song S D, Li W J, Deng Y P, Ruan Y L, Zhang Y N, Qin X H, Chen Z W. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries[J]. Nano Energy, 2020, 67:104208.
doi: 10.1016/j.nanoen.2019.104208 URL |
[112] |
Christensen M K, Mathiesen J K, Simonsen S B, Norby P. Transformation and migration in secondary zin-cair batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography[J]. J. Mater. Chem. A, 2019, 7(11):6459-6466.
doi: 10.1039/c8ta11554k |
[113] |
Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2):485-502.
doi: 10.1016/j.joule.2018.11.002 URL |
[114] |
Zhang C, Wang J M, Zhang L, Zhang J Q, Cao C N. Study of the performance of secondary alkaline pasted zinc electrodes[J]. J. Appl. Electrochem., 2001, 31(9):1049-1054.
doi: 10.1023/A:1017923924121 URL |
[115] |
Wei X, Desai D, Yadav G G, Turney D E, Couzis A, Banerjee S. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries[J]. Electrochim. Acta, 2016, 212:603-613.
doi: 10.1016/j.electacta.2016.07.041 URL |
[116] |
Santos F, Abad J, Vila M, Castro G R, Urbina A, Romero A J F. In situ synchrotron X-ray diffraction study of Zn/Bi2O3 electrodes prior to and during discharge of Zn-air batteries: Influence on ZnO deposition[J]. Electrochim. Acta, 2018, 281:133-141.
doi: 10.1016/j.electacta.2018.05.138 URL |
[117] |
Yu J, Li B Q, Zhao C X, Liu J N, Zhang Q. Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries[J]. Adv. Mater., 2020, 32(12):1908488.
doi: 10.1002/adma.201908488 URL |
[118] |
Li B Q, Zhao C X, Chen S M, Liu J N, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries[J]. Adv. Mater., 2019, 31(19):1900592.
doi: 10.1002/adma.201900592 URL |
[119] |
Pan Y, Liu S J, Sun K A, Chen X, Wang B, Wu K L, Cao X, Cheong W C, Shen R G, Han A J, Chen Z, Zheng L R, Luo J, Lin Y, Liu Y Q, Wang D S, Peng Q, Zhang Q, Chen C, Li Y D. A Bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(28):8614-8618.
doi: 10.1002/anie.201804349 URL |
[120] |
Yang L, Shi L, Wang D, Lv Y L, Cao D P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery[J]. Nano Energy, 2018, 50:691-698.
doi: 10.1016/j.nanoen.2018.06.023 URL |
[121] |
Wang J, Liu W, Luo G, Li Z J, Zhao C, Zhang H R, Zhu M Z, Xu Q, Wang X Q, Zhao C M, Qu Y T, Yang Z K, Yao T, Li Y F, Lin Y, Wu Y, Li Y D. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy Environ. Sci., 2018, 11(12):3375-3379.
doi: 10.1039/C8EE02656D URL |
[122] |
Han X P, Ling X F, Yu D S, Xie D Y, Li L L, Peng S J, Zhong C, Zhao N Q, Deng Y D, Hu W B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49):1905622.
doi: 10.1002/adma.201905622 URL |
[1] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[2] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[3] | 高睿, 王俊凯, 胡中波, 刘向峰. 锂-空气电池正极催化剂表界面调控及构效关系研究进展[J]. 电化学(中英文), 2019, 25(1): 77-88. |
[4] | 陈星星. 扫描电化学显微镜在电催化氧反应研究中的应用[J]. 电化学(中英文), 2016, 22(2): 113-122. |
[5] | 秦来芬, 夏永高, 陈立鹏, 胡华胜, 肖锋, 刘兆平. 新一代动力锂离子电池磷酸锰锂正极材料的研究现状与展望[J]. 电化学(中英文), 2015, 21(3): 253-267. |
[6] | 艾新平, 杨汉西, . 高比能电池新材料与安全性新技术研究进展 Ⅱ.基于多电子反应的高能量密度电极材料[J]. 电化学(中英文), 2010, 16(3): 239-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||