[1] |
Fahanik-Babaei J, Rezaee B, Nazari M, Torabi N, Saghiri R, Sauve R, Eliassi A. A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity[J]. J. Cell Sci., 2020, 133(10): jcs242446.
|
[2] |
Kamel H, Healey J. Cardioembolic stroke[J]. Circ. Res., 2017, 120(3): 514-526.
doi: 10.1161/CIRCRESAHA.116.308407
pmid: 28154101
|
[3] |
Liu, Y D, Liu Z C, Zhao, F, Tian Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angew. Chem. Int. Edit., 2021, 60(26): 14429-14437.
doi: 10.1002/anie.v60.26
URL
|
[4] |
Weaver C. M. Potassium and health[J]. Adv. Nutr., 2013, 4(3): 368S-77S.
doi: 10.3945/an.112.003533
URL
|
[5] |
Qu Z, Steinvall E, Ghorbani R, Schmidt F M. Tunable diode laser atomic absorption spectroscopy for detection of potassium under optically thick conditions[J]. Anal. Chem., 2016, 88(7), 3754-3760.
doi: 10.1021/acs.analchem.5b04610
pmid: 26938713
|
[6] |
Beiraghi A, Shokri M. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy[J]. Talanta, 2018, 178: 616-621.
doi: S0039-9140(17)30913-X
pmid: 29136871
|
[7] |
Jewell M P, Greer M D. Dailey A L, Cash K J. Triplet-triplet annihilation upconversion based nanosensors for fluorescence detection of potassium[J]. ACS sens., 2020, 5(2): 474-480.
doi: 10.1021/acssensors.9b02252
URL
|
[8] |
Liu Y D, Liu Z C, Tian Y. Real-time tracking of electrical signals and an accurate quantification of chemical signals with long-term stability in the live brain[J]. Acc. Chem. Res., 2022, 55(19): 2821-2832.
doi: 10.1021/acs.accounts.2c00333
URL
|
[9] |
Da Y F, Luo S H, Tian Y. Real-time monitoring of neurotransmitters in the brain of living animals[J]. ACS Appl. Mater. Interfaces, 2022, 15(1): 138-157.
doi: 10.1021/acsami.2c02740
URL
|
[10] |
Liu Z C, Tian Y. Recent advances in development of devices and probes for sensing and imaging in the brain[J]. Sci. China-Chem., 2021, 64(6): 915-931.
doi: 10.1007/s11426-020-9961-3
|
[11] |
Huang S Q, Zhang L M, Dai L Y, Wang Y Y, Tian Y. Nonenzymatic electrochemical sensor with ratiometric signal output for selective determination of superoxide anion in rat brain[J]. Anal. Chem., 2021, 93(13): 5570-5576.
doi: 10.1021/acs.analchem.1c00151
URL
|
[12] |
Qian Y J, Zhang L M, Tian Y. Highly stable electrochemical probe with bidentate thiols for ratiometric monitoring of endogenous polysulfide in living mouse brains[J]. Anal. Chem., 2022, 94(2): 1447-1455.
doi: 10.1021/acs.analchem.1c04894
URL
|
[13] |
Dong H, Zhou Q, Zhang L M, Tian Y. Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain[J]. Angew. Chem. Int. Edit., 2019, 58(39): 13948-13953.
doi: 10.1002/anie.v58.39
URL
|
[14] |
Zhao F, Liu Y D, Dong H, Feng S Q, Shi G Y, Lin L N, Tian Y. An electrochemophysiological microarray for real-time monitoring and quantification of multiple ions in the brain of a freely moving rat[J]. Angew. Chem. Int. Edit., 2020, 59(26): 10426-10430.
doi: 10.1002/anie.v59.26
URL
|
[15] |
Dunn M R, McCloskey C M, Buckley P, Rhea K, Chaput J C. Generating biologically stable TNA aptamers that function with high affinity and thermal stability[J]. J. Am. Chem. Soc., 2020, 142(17): 7721-7724.
doi: 10.1021/jacs.0c00641
pmid: 32298104
|
[16] |
Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation[J]. Pharmacol. Ther., 2022, 238: 108173.
doi: 10.1016/j.pharmthera.2022.108173
URL
|
[17] |
Gong Z W, Liu Z C, Zhang Z H, Mei Y X, Tian Y. A highly stable two-photon ratiometric fluorescence probe for real-time biosensing and imaging of nitric oxide in brain tissues and larval zebrafish[J], CCS Chemistry, 2022, 4: 1-23.
doi: 10.31635/ccschem.021.202101230ed1
URL
|
[18] |
Liu Z C, Zhu Y, Zhang L M, Jiang W P, Liu Y W, Tang Q W, Cai X Q, Li J, Wang L H, Tao C L, Yin X Z, Li X W, Hou S G, Jiang D W, Liu K, Zhou X, Zhang H J, Liu M L, Fan C H, Tian Y. Structural and functional imaging of brains[J]. Sci China-Chem., 2022, 66(2): 324-366.
doi: 10.1007/s11426-022-1408-5
|
[19] |
Chen Z B, Guo J X, Zhang S G, Chen L. A one-step electrochemical sensor for rapid detection of potassium ion based on structure-switching aptamer[J]. Sens. Actuator B-Chem., 2013, 188: 1155-1157.
doi: 10.1016/j.snb.2013.08.039
URL
|
[20] |
Zhang L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Accounts Chem. Res., 2018, 51(3): 688-696.
doi: 10.1021/acs.accounts.7b00543
pmid: 29485847
|
[21] |
Liu W, Dong H, Zhang L M, Tian Y. Development of an efficient biosensor for the in vivo monitoring of Cu+ and pH in the brain: Rational design and synthesis of recognition molecules[J]. Angew. Chem. Int. Edit., 2017, 56(51): 16328-16332.
doi: 10.1002/anie.v56.51
URL
|
[22] |
Zhang C P, Liu Z C, Zhang L M, Zhu A W, Liao F M, Wan J J, Zhou J, Tian Y. A robust Au-C≡C functionalized surface: Toward real-time mapping and accurate quantification of Fe2+ in the brains of live ad Mouse models[J]. Angew. Chem. Int. Edit., 2020, 59(46): 20499-20507.
doi: 10.1002/anie.v59.46
URL
|
[23] |
Gao X, Jiang L. Hu B, et al. Au-Se bond based nanoprobe for imaging MMP-2 in Tumor cells under a high-thiol environment[J]. Anal. Chem., 2018, 90(7): 4719-4724.
doi: 10.1021/acs.analchem.7b05343
URL
|
[24] |
Liu H, Radford M N, Yang C T, Chen W, Xian M. Inorganic hydrogen polysulfides: Chemistry, chemical biology, and detection[J]. Br. J. Pharmacol., 2019, 176(4): 616-627.
doi: 10.1111/bph.v176.4
URL
|