电化学(中英文) ›› 2021, Vol. 27 ›› Issue (5): 498-507. doi: 10.13208/j.electrochem.201203
所属专题: “电有机合成、水处理”专题文章
收稿日期:
2020-12-03
修回日期:
2021-01-10
出版日期:
2021-10-28
发布日期:
2021-01-25
通讯作者:
钮东方,张新胜
E-mail:dfniu@ecust.edu.cn;xszhang@ecust.edu.cn
基金资助:
Hao Guo, Dong-Fang Niu*(), Shuo-Zhen Hu, Xin-Sheng Zhang*()
Received:
2020-12-03
Revised:
2021-01-10
Published:
2021-10-28
Online:
2021-01-25
Contact:
Dong-Fang Niu,Xin-Sheng Zhang
E-mail:dfniu@ecust.edu.cn;xszhang@ecust.edu.cn
摘要:
本文研究了以对-硝基苯基-β-羟乙基砜为原料在铅板电极上电化学还原制备对-(β-羟乙基砜)苯胺的反应,探究电流密度、通电量、温度和硫酸浓度对电流效率和产率的影响。在最优条件下(电流密度300 A·m-2,理论通电量6.0 F·mol-1,温度70℃,硫酸浓度1.5 mol·L-1),该反应的电流效率达到92.7%,产率达到93.0%。在该最优条件的基础上向电解液中加入质量分数2.0%的硫酸钛可将产率提升至97.8%,硫酸钛的引入间接缓解了反应后期原料扩散速率慢的问题。
郭浩, 钮东方, 胡硕真, 张新胜. 对-(β-羟乙基砜)苯胺的电化学合成[J]. 电化学(中英文), 2021, 27(5): 498-507.
Hao Guo, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang. Electrochemical Synthesis of p-(β-Hydroxyethyl Sulfone) Aniline[J]. Journal of Electrochemistry, 2021, 27(5): 498-507.
[1] | Tian Y(田勇), Liu C Y(刘传玉), Hu Y L(胡永玲), Zhang X B(张秀斌), Li Q(黎庆). Synjournal technology and present situation of manufacture of p-aminophenyl-β-sulf-atoethylsulfone[J]. Chem. Adhesion(化学与黏合), 2011, 33(1): 63-66. |
[2] |
Gan H L, Yi C H. Synjournal and characterization of a novel waterborne epoxy resin dye containing diazo sulfatoethylsulfone chromophore[J]. Fiber. Polym., 2015, 16(1): 17-22.
doi: 10.1007/s12221-015-0017-x URL |
[3] |
Zhu Z H, Jiang L M. Studies on new reactive dyes having two vinyl sulfone groups. Part II: Kinetic studies of the condensation reaction between C.I. Reactive Red 120 and m- and p-(β-sulfatoethyl-sulfonyl) aniline[J]. Dyes Pigments, 1998, 36(4): 355-363.
doi: 10.1016/S0143-7208(97)00033-8 URL |
[4] |
Shesterkina A A, Strekalova A A, Kustov L M. Selective liquid phase hydrogenation of aromatic nitro compounds in the presence of Fe-Cu nanoparticles[J]. Russ. J. Phys. Chem. A, 2020, 94(6): 1180-1183.
doi: 10.1134/S0036024420060217 URL |
[5] |
Lee N R, Bikovtseva A A, Cortes C M, Gallou F, Lipshutz B H. Carbonyl iron powder: a reagent for nitro group reductions under aqueous micellar catalysis conditions[J]. Org. Lett., 2017, 19(24): 6518-6521.
doi: 10.1021/acs.orglett.7b03216 URL |
[6] | Zhu K J(朱孔杰), Li X Q(李秀琴), Zhuang W M(庄文明). Study on synjournal of 2-chloropyridine-4-amine[J]. Shandong Chem. Ind.(山东化工), 2016, 45(15): 13-14. |
[7] |
Mironenko R M, Belskaya O B, Stepanova L N, Gulyaeva T I, Trenikhin M V, Likholobov V A. Palladium supported on carbon nanoglobules as a promising catalyst for selective hydrogenation of nitroarenes[J]. Catal. Lett., 2020, 150(3): 888-900.
doi: 10.1007/s10562-019-02974-6 URL |
[8] |
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Acc. Chem. Res., 2013, 46(8): 1740-1748.
doi: 10.1021/ar300361m URL |
[9] |
Jadbabaei N, Slobodjian R J, Shuai D M, Zhang H C. Catalytic reduction of 4-nitrophenol by palladium-resin composites[J]. Appl. Catal. A - Gen., 2017, 543: 209-217.
doi: 10.1016/j.apcata.2017.06.023 URL |
[10] |
Lang L M, Pan Z R, Yan J. Ni-Au alloy nanoparticles as a high performance heterogeneous catalyst for hydrogenation of aromatic nitro compounds[J]. J. Alloy. Compd., 2019, 792: 286-290.
doi: 10.1016/j.jallcom.2019.03.323 URL |
[11] |
Zhang J W, Lu G P, Cai C. Chemoselective transfer hydrogenation of nitroarenes by highly dispersed Ni-Co BMNPs[J]. Catal. Commun., 2016, 84: 25-29.
doi: 10.1016/j.catcom.2016.05.023 URL |
[12] |
Kaslik J, Medrik I, Ranc V, Varma R S, Zboril R, Gawande M B. Synjournal of flower-like magnetite nano-assembly: application in the efficient reduction of nitroarenes[J]. Sci. Rep., 2017, 7: 11585.
doi: 10.1038/s41598-017-09477-7 URL |
[13] |
Hauser J L, Amberchan G, Tso M, Manley R, Bustillo K, Cooper J, Golden J H, Singaram B, Oliver S R J. A mesoporous aluminosilicate nanoparticle-supported nickel-boron composite for the catalytic reduction of nitro-arenes[J]. ACS Appl. Nano Mater., 2019, 2(3): 1472-1483.
doi: 10.1021/acsanm.8b02351 |
[14] |
Nandi D, Siwal S, Choudhary M, Mallick K. Carbon nitride supported palladium nanoparticles: an active system for the reduction of aromatic nitro-compounds[J]. Appl. Catal. A - Gen., 2016, 523(5): 31-38.
doi: 10.1016/j.apcata.2016.04.004 URL |
[15] | Acelas M, Sierra A F, Sierra C A. Exploring the nitro group reduction in low-solubility oligo-phenylenevinylene systems: rapid synjournal of amino derivatives[J]. Sy-nthetic Commun., 2020, 50(9): 1335-1352. |
[16] |
Xu Y, Lv X J, Chen Y, Fu W F. Highly selective reduction of nitroarenes to anilines catalyzed using MOF-derived hollow Co3S4 in water under ambient conditions[J]. Catal. Commun., 2017, 101: 31-35.
doi: 10.1016/j.catcom.2017.07.001 URL |
[17] |
Kang C, Lee J, Silvester D S. Electroreduction of 2,4,6-trinitrotoluene in room temperature ionic liquids: evidence of an EC2 mechanism[J]. J. Phys. Chem. C, 2016, 120(20): 10997-11005.
doi: 10.1021/acs.jpcc.6b03018 URL |
[18] |
Raheem A A, Gopi S, Kathoresan M, Praveen C. Electropolymerization of thienyl tethered comonomers and application towards the electrocatalytic reduction of nitrobenzene[J]. RSC Adv., 2019, 9(4): 1895-1902.
doi: 10.1039/C8RA08603F URL |
[19] |
Viswanathan P, Ramaraj R. Polyelectrolyte assisted synjournal and enhanced catalysis of silver nanoparticles: electrocatalytic reduction of hydrogen peroxide and cataly-tic reduction of 4-nitroaniline[J]. J. Mol. Catal. A - Chem., 2016, 424: 128-134.
doi: 10.1016/j.molcata.2016.08.001 URL |
[20] |
Zhang P L, Sheng X, Chen X Y, Fang Z Y, Jiang J, Wang M, Li F S, Fan L Z, Ren Y S, Zhang B B, Timmer B J J, Ahlquist M S G, Sun L C. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source[J]. Angew. Chem. Int. Ed., 2019, 58(27): 9155-9159.
doi: 10.1002/anie.v58.27 URL |
[21] | Hu Y L(胡永玲), Han D W(韩大维), Tian Y(田勇). P-aminophenyl-beta-hydroxyethyl sulfone preparation method: CN, 200810137180: A[P]. 2009-02-11. |
[22] |
Richard W, Evrard D, Gros P. New insight into 4-nitroben-zene diazonium reduction process: evidence for a grafting step distinct from NO2 electrochemical reactivity[J]. J. Electroanal. Chem., 2012, 685: 109-115.
doi: 10.1016/j.jelechem.2012.09.014 URL |
[23] | Niu D F(钮东方), Zhang H H(张辉辉), Zhang X S(张新胜). Electrosynjournal of 2,6-dichloro-4-aminophenol on a three-dimensional copper mesh cathode[J]. Fine Chem.(精细化工), 2015, 32(4): 447-450+456. |
[24] |
Lemaire A, Hapiot P, Geneste F. Ti-catalyst biomimetic sensor for the detection of nitroaromatic pollutants[J]. Anal. Chem., 2019, 91(4): 2797-2804.
doi: 10.1021/acs.analchem.8b04671 pmid: 30672286 |
[25] | Ravi M D, Sivasankarapillai V N, Anantharaman P N. Ele-ctroreduction of m-nitroaniline to m-phenylene diamine using Ti3+/Ti4+ redox system[J]. B. Electrochem., 1988, 4(3): 241-244. |
[26] | Fan J H(樊金红), Xu W Y(徐文英), Gao T Y(高廷耀). Electrochemical reduction characteristics of nitrobenzene at the copper electrode[J]. J. Electrochem.(电化学), 2005, 11(3): 341-345. |
[27] | Ma C A(马淳安), Zheng Q A(郑勤安), Zhou Q(周强), Xu Y H(徐颖华). Electrosynjournal of p-aminobenzenear-senic acid[J]. J. Electrochem.(电化学), 2010, 16(1): 70-73. |
[28] | Ma C A(马淳安), Ge X F(葛小芳), Zhu Y H(朱英红), et al. Study on electroreduction performance and mechanism of substituted aryl nitrobenzene[J]. J. Chem. Eng. Chin. Univ.(高校化学工程学报), 2006, 20(5): 728-733. |
[29] | Liu Y Z, Zhang A J, Wang H, Zhang L, Lu J X. Synjournal of 1,5-diaminonaphthalene by electrochemical reduction[J]. Chinese J. Org. Chem., 2008, 28(5): 804-809. |
[1] | 张芯婉, 孟广源, 方立强, 常定明, 李童, 胡锦文, 陈鹏, 刘勇弟, 张乐华. 基于BP神经网络的电化学还原硝酸盐过程智能控制[J]. 电化学(中英文), 2023, 29(12): 211215-. |
[2] | 毛麟, 钮东方, 胡硕真, 张新胜. 电化学合成乙酰基吡嗪[J]. 电化学(中英文), 2022, 28(5): 2107061-. |
[3] | 刘佩璇, 彭芦苇, 何瑞楠, 李露露, 乔锦丽. 一种用于电还原CO2生成甲酸的高性能连续流动式MEA反应器[J]. 电化学(中英文), 2022, 28(1): 2104231-. |
[4] | 张钰宁, 钮东方, 胡硕真, 张新胜. 基于纳米金属的增强效应在CO2电还原反应中的应用进展[J]. 电化学(中英文), 2020, 26(4): 495-509. |
[5] | 李二岭, 杨 发, 阮明波, 宋 平, 徐维林. Fe-N共掺杂纳米碳材料的形貌对电化学还原反应的影响[J]. 电化学(中英文), 2019, 25(4): 486-496. |
[6] | 高敦峰,阎程程,汪国雄,包信和. Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响[J]. 电化学(中英文), 2018, 24(6): 757-765. |
[7] | 张 瑞,吕伟欣,雷立旭. H型电解池中CO2电化学还原的阳极电解液问题[J]. 电化学(中英文), 2017, 23(1): 72-79. |
[8] | 赵 波, 姜 莉, 袁铭辉, 符显珠, 孙 蓉, 汪正平. 电化学法制备石墨烯及其复合材料[J]. 电化学(中英文), 2016, 22(1): 1-19. |
[9] | 杨瑞枝, Peter Strasser, Michael Toney. 电化学去合金化Pt(Pd)-Cu对氧的电催化还原活性的研究[J]. 电化学(中英文), 2012, 18(2): 141-146. |
[10] | 赵晨辰, 郭建伟, 王莉, 何向明, 王诚, 刘志祥. Sn/Cu电极电化学还原CO2的研究[J]. 电化学(中英文), 2012, 18(2): 169-173. |
[11] | 赖宇坤, 王炜, . 循环伏安法测定铁胺络合物还原强度[J]. 电化学(中英文), 2011, 17(1): 102-106. |
[12] | 樊俊丽, 叶伟林, 王荣, 徐立群, 吴霞琴, . 不同离子液体中硝基苯的电化学还原[J]. 电化学(中英文), 2009, 15(3): 260-263. |
[13] | 王胜, 雷瑛, 时康, . 电化学诱导聚合甲基丙烯酸膜及葡萄糖酶电极制备[J]. 电化学(中英文), 2009, 15(3): 255-259. |
[14] | 林娟, 赵炜, . 煤及其含氧基团模拟物的电化学还原[J]. 电化学(中英文), 2007, 13(2): 177-182. |
[15] | 邱国红;汪的华;金先波;胡晓宏;陈政;. Cr_2O_3粉末在CaCl_2熔盐中直接电化学还原的金属通腔电极研究[J]. 电化学(中英文), 2006, 12(3): 304-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||