电化学(中英文) ›› 2021, Vol. 27 ›› Issue (5): 467-497. doi: 10.13208/j.electrochem.201126
所属专题: “表界面”专题文章
李响1, 黄秋安1,2,*(), 李伟恒2, 白玉轩1,2, 王佳1,2, 刘杨2, 赵玉峰2, 王娟1,*(), 张久俊2,*()
收稿日期:
2020-11-26
修回日期:
2020-12-25
出版日期:
2021-10-28
发布日期:
2021-02-09
通讯作者:
黄秋安,王娟,张久俊
E-mail:hqahqahqa@163.com;juanwang168@gmail.com;jiujun.zhang@i.shu.edu.cn
基金资助:
Xiang Li1, Qiu-An Huang1,2,*(), Wei-Heng Li2, Yu-Xuan Bai1,2, Jia Wang1,2, Yang Liu2, Yu-Feng Zhao2, Juan Wang1,*(), Jiu-Jun Zhang2,*()
Received:
2020-11-26
Revised:
2020-12-25
Published:
2021-10-28
Online:
2021-02-09
Contact:
Qiu-An Huang,Juan Wang,Jiu-Jun Zhang
E-mail:hqahqahqa@163.com;juanwang168@gmail.com;jiujun.zhang@i.shu.edu.cn
摘要:
电化学阻抗谱可用于诊断多孔电极内电荷转移反应,即界面电荷集聚和电荷传导,以及反应物质输运。本文采用复相量方法,在同态假设条件下,重新推演多孔电极阻抗谱模型,厘清传统多孔电极阻抗谱模型中的模糊性表述。(1) 定义多孔电极表征输入参数,包括电极基体电子电导率σ1 、电解质离子电导率σ2、界面电荷传递电导率gct、单位面积界面电容C、固相扩散系数D、速度常数k、电极厚度d、特征孔深Lp 和单位体积表面积Sc;(2) 解析阻抗谱特征输出参数,包括场扩散常数K,特征频率ω0、ω1、ω2、ω3和 ωmax,它们分别相关于界面传导反应、有限场扩散、氧化还原反应、孔内扩散和最小特征孔尺寸,以及分别对应于从传导到扩散和从扩散到饱和的转折频率fk1 和fk2;(3) 当参数X和Z同时变化时(X = σ1和Z = d,Sc,Lp,C,gct,D,k),通过阻抗谱特征参数的演变规律,分析了电荷转移反应中X和Ζ参数耦合竞争;(4)为深入分析电荷转移反应中参数X和Z的耦合竞争,引入了分叉频率fXZ和fZX 。fXZ和fZX所处位置可以用于表征参数X和Z影响电荷转移反应的深度和广度。当分叉频率fXZ和fZX不存在时,表明电荷转移反应中参数X和Z在全频率范围内存在耦合竞争。总之,借助于特征频率和分叉频率,本文一方面研究了动力学参数和微观结构参数对多孔电极中电荷转移反应的影响,另一方面分析谱图的变化及其背后的阻抗谱特征演化规律。本文研究结果可为阻抗谱的系统仿真和辨识提供理论基础,可为多孔电极内电荷转移反应的竞争分析提供技术支撑,还可为电化学储能系统的优化设计提供诊断工具。
李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学(中英文), 2021, 27(5): 467-497.
Xiang Li, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jia Wang, Yang Liu, Yu-Feng Zhao, Juan Wang, Jiu-Jun Zhang. Fundamentals of Electrochemical Impedance Spectroscopy for Macrohomogeneous Porous Electrodes[J]. Journal of Electrochemistry, 2021, 27(5): 467-497.
表1
多孔电极EIS仿真时参数默认值
Parameter | Default | References |
---|---|---|
Electrode thickness (d) | 90 μm | [ |
Unit area interface capacitance (C) | 3×10-5 F·cm-2 | [ |
Diffusion coefficient (D) | 1×10-13 cm2·s-1 | [ |
Characteristic hole depth (Lp) | 90 nm | [ |
Unit volume surface area (Sc) | 2×104 cm-1 | [ |
Rate constant (k) | 1×10-7 cm·s-1 | [ |
Electronic conductivity (σ1 ) | 5×10-1 S·cm-1 | [ |
Electrolyte ionic conductivity (σ2) | 5×10-3 S·cm-1 | [ |
Interface charge transfer conductivity (gct) | 7.6 S·cm-1 | [ |
表3
σ1和gct 变化时多孔电极的EIS特征
gct (S·cm-1) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1g0 | 2g0 | 10g0 | 1g0 | 2g0 | 10g0 | 1g0 | 2g0 | 10g0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 11 | 22 | 111 | 11 | 22 | 111 | 11 | 22 | 111 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.119 | 0.195 | 0.557 | 0.119 | 0.195 | 0.557 | 0.119 | 0.195 | 0.557 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
表4
σ1和C变化时多孔电极的EIS特征
C(F·cm-2) | σ1=1σ0 | σ1=10σ0 | σ1=100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1C0 | 6C0 | 36C0 | 1C0 | 6C0 | 36C0 | 1C0 | 6C0 | 36C0 | |
K(cm2·s-1) | 0.025 | 0.0042 | 0.0007 | 0.045 | 0.0076 | 0.0013 | 0.05 | 0.0083 | 0.0014 |
ωmax(rad·s-1) | 3×108 | 5×107 | 8×106 | 5.6×108 | 9×107 | 1.5×107 | 6×108 | 1×108 | 1.7×107 |
ω0 (rad·s-1) | 133 | 22 | 4 | 133 | 22 | 4 | 133 | 22 | 4 |
ω1 (rad·s-1) | 309 | 51 | 9 | 561 | 94 | 16 | 611 | 102 | 17 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.59 | 0.195 | 0.05 | 0.59 | 0.195 | 0.05 | 0.59 | 0.195 | 0.05 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
表5
电子电导率 σ1和扩散系数D变化时多孔电极的EIS特征
D(cm2·s-1) | σ1=1σ0 | σ1=10σ0 | σ1=100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1D0 | 10D0 | 100D0 | 1D0 | 10D0 | 100D0 | 1D0 | 10D0 | 100D0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.1 | 0.01 | 0.001 | 0.1 | 0.01 | 0.001 | 0.1 | 0.01 | 0.001 |
ω3 (rad·s-1) | 0.0012 | 0.012 | 0.12 | 0.0012 | 0.012 | 0.12 | 0.0012 | 0.012 | 0.12 |
fk1(Hz) | 0.195 | 0.087 | 0.054 | 0.195 | 0.087 | 0.054 | 0.195 | 0.087 | 0.054 |
fk2(Hz) | 0.001 | 0.011 | —— | 0.001 | 0.011 | —— | 0.001 | 0.011 | —— |
表6
电子电导率 σ1和速度常数k变化时多孔电极的EIS特征
k(cm·s-1) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1k0 | 10k0 | 100k0 | 1k0 | 10k0 | 100k0 | 1k0 | 10k0 | 100k0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.001 | 0.1 | 10 | 0.001 | 0.1 | 10 | 0.001 | 0.1 | 10 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.0445 | 0.195 | - | 0.0445 | 0.195 | - | 0.0445 | 0.195 | - |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
表7
σ1和d变化时多孔电极的EIS特征
d(μm) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1d0 | 3d0 | 9d0 | 1d0 | 3d0 | 9d0 | 1d0 | 3d0 | 9d0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 5×107 | 5×107 | 5×107 | 9×107 | 9×107 | 9×107 | 1×108 | 1×108 | 1×108 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 463 | 51 | 6 | 842 | 94 | 10 | 917 | 102 | 11 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
表8
σ1和Lp 变化时多孔电极的EIS特征
Lp (nm) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1L0 | 3L0 | 9L0 | 1L0 | 3L0 | 9L0 | 1L0 | 3L0 | 9L0 | |
K(cm2·s-1) | 0.0042 | 0.0042 | 0.0042 | 0.0076 | 0.0076 | 0.0076 | 0.0083 | 0.0083 | 0.0083 |
ωmax(rad·s-1) | 4.6×108 | 5×107 | 5.7×106 | 8×108 | 9×107 | 1×107 | 9×108 | 1×108 | 1.1×107 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 51 | 51 | 51 | 94 | 94 | 94 | 102 | 102 | 102 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.011 | 0.0012 | 0.00014 | 0.011 | 0.0012 | 0.00014 | 0.011 | 0.0012 | 0.00014 |
fk1(Hz) | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.0085 | 0.001 | 0.00014 | 0.0085 | 0.001 | 0.00014 | 0.0085 | 0.001 | 0.00014 |
表9
σ1和 Sc变化时多孔电极的EIS特征
Sc (cm-1) | σ1 =1σ0 | σ1 =10σ0 | σ1 =100σ0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1S0 | 3S0 | 9S0 | 1S0 | 3S0 | 9S0 | 1S0 | 3S0 | 9S0 | |
K(cm2·s-1) | 0.0119 | 0.0042 | 0.0014 | 0.02 | 0.0076 | 0.0025 | 0.024 | 0.0083 | 0.0028 |
ωmax(rad·s-1) | 1×108 | 5×107 | 1.7×107 | 2.7×108 | 9×107 | 3×107 | 2.9×108 | 1×108 | 3.4×107 |
ω0 (rad·s-1) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
ω1 (rad·s-1) | 147 | 51 | 17 | 267 | 94 | 31 | 291 | 102 | 34 |
ω2 (rad·s-1) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ω3 (rad·s-1) | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 |
fk1(Hz) | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 | 0.195 |
fk2(Hz) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
表10
多孔电极输入参数对其EIS响应特征参数的影响
characteristic parameter | K(cm2·s-1) | ωmax(rad·s-1) | ω0(rad·s-1) | ω1(rad·s-1) | ω2(rad·s-1) | ω3(rad·s-1) | fk1(Hz) | fk2(Hz) |
---|---|---|---|---|---|---|---|---|
σ1 (S·cm-1) | √ | √ | × | √ | × | × | × | × |
gct (S·cm-1) | × | × | √ | × | × | × | √ | × |
C(F·cm-2) | √ | √ | √ | √ | × | × | √ | × |
D(cm2·s-1) | × | × | × | × | √ | √ | √ | √ |
k(cm2·s-1) | × | × | × | × | √ | × | √ | × |
d (μm) | × | × | × | √ | × | × | × | × |
Lp (nm) | × | √ | × | × | × | √ | × | √ |
Sc (cm-1) | √ | √ | × | √ | × | × | × | × |
[1] |
Newman J, Tiedemann W. Porous-electrode theory with battery applications[J]. AICHE J., 1975, 21(1): 25-41.
doi: 10.1002/(ISSN)1547-5905 URL |
[2] |
Wang Y, Fu X W, Zheng M, Zhong W H, Cao G Z. Strategies for building robust traffic networks in advanced energy storage devices: a focus on composite electrodes[J]. Adv. Mater., 2019, 31(6): 1804204.
doi: 10.1002/adma.v31.6 URL |
[3] |
Panabiere E, Badot J C, Dubrunfaut O, Etiemble A, Lestriez Bernard. Electronic and ionic dynamics coupled at solid-liquid electrolyte interfaces in porous nanocomposites of carbon black, poly(vinylidene fluoride), and γ-alumina[J]. J. Phys. Chem. C, 2017, 121(15): 8364-8377.
doi: 10.1021/acs.jpcc.6b12204 URL |
[4] |
Javier A E, Patel S N, Hallinan D T, Srinivasan V, Balsara N P. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes[J]. Angew. Chem. Int. Ed., 2011, 50(42): 9848-9851.
doi: 10.1002/anie.v50.42 URL |
[5] |
Macdonald J R, Barsoukov E. Impedance spectroscopy: theory, experiment, and applications[J]. History, 2005, 1(8): 1-13.
doi: 10.1111/hist.1916.1.issue-1 URL |
[6] | Zhuang Q C, Yang Z, Zhang L, Cui Y H. Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem., 2020, 32(6): 761-791. |
[7] |
Huang Q A, Hui R S, Wang B W, Zhang J J. A review of AC impedance modeling and validation in SOFC diagnosis[J]. Electrochim. Acta, 2007, 52(28): 8144-8164.
doi: 10.1016/j.electacta.2007.05.071 URL |
[8] |
Tang Z, Huang Q A, Wang Y J, Zhang F Z, Li W H, li A J, Zhang L, Zhang J J. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance[J]. J. Power Sources, 2020, 468: 228361.
doi: 10.1016/j.jpowsour.2020.228361 URL |
[9] | Huang Q A(黄秋安), Li W H(李伟恒), Tang Z P(汤哲鹏), Zhang F Z(张方舟), Li A J(李爱军), Zhang J J(张久俊). Fundamentals of electrochemical impedance spectroscopy[J]. Chin. J. Nat.(自然杂志), 2020, 42(1): 12-26. |
[10] |
Huang Q A, Shen Y, Huang Y H, Zhang L, Zhang J J. Impedance characteristics and diagnoses of automotive lithium-ion batteries at 7.5% to 93.0% state of charge[J]. Electrochim. Acta, 2016, 219: 751-765.
doi: 10.1016/j.electacta.2016.09.154 URL |
[11] | Robert D L. Electrochemical response of porous and rough electrodes[M]// Advances in electrochemistry and electrochemical engineering, Interscience Publishers—J. Wiley and Son, Inc., New York, 1967, 6: 329-397. |
[12] |
Paasch G, Micka K, Gersdorf P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes[J]. Electrochim. Acta, 1993, 38(18): 2653-2662.
doi: 10.1016/0013-4686(93)85083-B URL |
[13] |
Lasia A. Impedance of porous electrodes[J]. J. Electroanal. Chem., 1995, 397(1-2): 27-33.
doi: 10.1016/0022-0728(95)04177-5 URL |
[14] |
Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Compte A . Anomalous transport effects in the impedance of porous film electrodes[J]. Electrochem. Commun., 1999, 1(9): 429-435.
doi: 10.1016/S1388-2481(99)00084-3 URL |
[15] | Li Y(李雨), Yang W M(杨维明), Huang Q A(黄秋安), Li W H(李伟恒), Li X F(李喜飞), Zhang J J(张久俊). Simulation of Warburg impedance spectra under finite diffusion boundary conditions for porous energy electrode materials[J]. J. Xi'an Univ. Technol.(西安理工大学学报), 2019, 35(2): 138-146. |
[16] |
Meyers J P, Doyle M, Darling R M, Newman J. The impedance response of a porous electrode composed of intercalation particles[J]. J. Electrochem. Soc., 2000, 147(8): 2930-2940.
doi: 10.1149/1.1393627 URL |
[17] |
Tröltzsch U, Kanoun O. Generalization of transmission line models for deriving the impedance of diffusion and porous media[J]. Electrochim. Acta, 2012, 75: 347-356.
doi: 10.1016/j.electacta.2012.05.014 URL |
[18] |
Siroma Z, Fujiwara N, Yamazaki S, Asahi M, Nagai T, Ioroi T. Mathematical solutions of comprehensive variations of a transmission-line model of the theoretical impedance of porous electrodes[J]. Electrochim. Acta, 2015, 160: 313-322.
doi: 10.1016/j.electacta.2015.02.065 URL |
[19] |
Huang J, Zhang J B. Theory of impedance response of porous electrodes: simplifications, inhomogeneities, non-stationarities and applications[J]. J. Electrochem. Soc., 2016, 163(9): A1983-A2000.
doi: 10.1149/2.0901609jes URL |
[20] |
Zhang Z M, Gao Y, Chen S L, Huang J. Understanding dynamics of electrochemical double layers via a modified concentrated solution theory[J]. J. Electrochem. Soc., 2020, 167(1): 013519.
doi: 10.1149/2.0192001JES URL |
[21] |
Zhuang Q C(庄全超), Yang Z(杨梓), Zhang L(张蕾), Cui Y H(崔艳华). Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Prog. Chem.(化学进展), 2020, 32(6): 761-791.
doi: 10.7536/PC191116 |
[22] |
Huang J, Gao Y, Luo J, Wang S S, Li C K, Chen S L, Zhang J B. Editors’ choice-Review-Impedance response of porous electrodes: Theoretical framework, physical models and applications[J]. J. Electrochem. Soc., 2020, 167(16): 166503.
doi: 10.1149/1945-7111/abc655 URL |
[23] |
Zhu C B, Usiskin R E, Yu Y L, Maier J. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): eaao2808.
doi: 10.1126/science.aao2808 URL |
[24] |
Ramadesigan V, Northrop P W C, De S, Santhanagopalan S, Braatz R D, Subramanian V R. Modeling and simulation of lithium-ion batteries from a systems engineering perspective[J]. J. Electrochem. Soc., 2012, 159(3): R31-R45.
doi: 10.1149/2.018203jes URL |
[25] | Huang Q A, Li Y, Tsay K, Sun C W. Multi-scale impedance model for supercapacitor porous electrodes: Theoretical prediction and experimental validation[J]. J. Power Sour-ces, 2018, 400: 69-86. |
[26] |
Huang Q A, Park S M. Unified model for transient faradaic impedance spectroscopy: theory and prediction[J]. J. Phys. Chem. C, 2012, 116(32): 16939-16950.
doi: 10.1021/jp306140w URL |
[27] | Mei W X, Chen H D, Sun J H, Wang Q S. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model[J]. Sustain. Energy Fuels, 2019, 3(1): 148-165. |
[28] | Yoon S H, Jang J H, Ka B H, Oh S M. Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness[J]. Ele-ctrochim. Acta, 2005, 50(11): 2255-2262. |
[29] |
Honda K, Rao T N, Tryk D A, Fujishima A. Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications[J]. J. Electrochem. Soc., 2001, 148(7): A668-A679.
doi: 10.1149/1.1373450 URL |
[30] |
Lasia A. Impedance of porous electrodes[J]. J. Electroanal. Chem., 1995, 397(1-2): 27-33.
doi: 10.1016/0022-0728(95)04177-5 URL |
[31] |
Jurczakowski R, Hitz C, Lasia A. Impedance of porous Au based electrodes[J]. J. Electroanal. Chem., 2004, 572(2): 355-366.
doi: 10.1016/j.jelechem.2004.01.008 URL |
[32] |
Meyers J P, Doyle M, Darling R M, Newman J. The im-pedance response of a porous electrode composed of intercalation particles[J]. J. Electrochem. Soc., 2000, 147(8): 2930-2940.
doi: 10.1149/1.1393627 URL |
[33] |
Guo Q Z, Subramanian V R, Weidner J W, White R E. Estimation of diffusion coefficient of lithium in carbon using AC impedance technique[J]. J. Electrochem. Soc., 2002, 149(3): A307-A318.
doi: 10.1149/1.1447224 URL |
[34] |
Yu P, Popov B N, Ritter J A, et al. Determination of the lithium ion diffusion coefficient in graphite[J]. J. Electro-chem. Soc., 1999, 146(1): 8-14.
doi: 10.1149/1.1391556 URL |
[35] |
Ji F, Wang L, Yang J, Wu X. Highly compact, free-standing porous electrodes from polymer-derived nanoporous carbons for efficient electrochemical capacitive deionization[J]. J. Mater. Chem. A, 2019, 7(4): 1768-1778.
doi: 10.1039/C8TA10268F URL |
[36] | Lanzi O, Landau U. Effect of pore structure on current and potential distributions in a porous electrode[J]. J. Ele-ctrochem. Soc., 1990, 137(2): 585-593. |
[37] |
Lee S B, Pathak C, Ramadesigan V, Gao W Z, Subramanian V R. Direct, efficient, and real-time simulation of physics-based “battery models for stand-alone PV-battery microgrids[J]. J. Electrochem. Soc., 2017, 164(11): E3026-E3034.
doi: 10.1149/2.0031711jes URL |
[38] |
Deng Z W, Deng H, Yang L, Cai Y S, Zhao X W. Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery[J]. Energy, 2017, 138: 509-519.
doi: 10.1016/j.energy.2017.07.069 URL |
[39] |
Seok D, Jeong Y, Han K, Yoon D Y, Sohn H. Recent pro-gress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy[J]. Sustainability, 2019, 11(13): 3694.
doi: 10.3390/su11133694 URL |
[40] |
Jeerapan I, Ma N. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices[J]. C—Journal of Carbon Research, 2019, 5(4): 62.
doi: 10.3390/c5040062 URL |
[41] |
Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochim. Acta, 2006, 51(8-9): 1636-1640.
doi: 10.1016/j.electacta.2005.02.137 URL |
[42] |
Itagaki M, Hatada Y, Shitanda I, Watanabe K. Complex impedance spectra of porous electrode with fractal structure[J]. Electrochim. Acta, 2010, 55(21): 6255-6262.
doi: 10.1016/j.electacta.2009.10.016 URL |
[43] | Yoo H D, Jang J H, Ryu J H, Park Y, Oh S M. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors[J]. J. Power Sour-ces, 2014, 267: 411-420. |
[1] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[2] | 张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学(中英文), 2022, 28(2): 2108471-. |
[3] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
[4] | 吉维肖, 王功伟, 王强, 白力军, 屈德扬. 多孔电极在电化学体系中的应用[J]. 电化学(中英文), 2020, 26(5): 576-595. |
[5] | 王晓晓, 周子睿, 单强, 张增明, 黄俊, 刘欲文, 陈胜利. 锂离子电池多孔电极理论的回顾与新思考[J]. 电化学(中英文), 2020, 26(5): 596-606. |
[6] | 马洪运, 姚晓辉, 妙孟姚, 易阳, 伍绍中, 周江. 高镍正极材料(LiNi0.83Co0.12Mn0.05O2)45°C循环失效机理研究[J]. 电化学(中英文), 2020, 26(3): 431-440. |
[7] | 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学(中英文), 2020, 26(1): 3-18. |
[8] | 廖群,张曙枫,冷文华. 铁电极电还原溴化钠甲醇溶液反应动力学和机理[J]. 电化学(中英文), 2017, 23(6): 645-653. |
[9] | 史坤明,郭建伟,王佳. Pt/C催化剂氧还原反应的交流阻抗动态研究[J]. 电化学(中英文), 2016, 22(5): 542-548. |
[10] | 侯瑞青,蒋平丽,董士刚,林昌健*. 镁钙合金表面贻贝类吸附蛋白膜的NaIO4氧化处理及抗腐蚀性能[J]. 电化学(中英文), 2015, 21(1): 58-65. |
[11] | 顾菁,乔永辉,朱新宇,阴笑弘,张欣,陈烨,朱志伟,邵元华*. 液/液界面电化学及其进展[J]. 电化学(中英文), 2014, 20(3): 234-242. |
[12] | 冷文华, 朱红乔. 结合(光)电化学方法研究光催化降解污染物反应[J]. 电化学(中英文), 2013, 19(5): 437-443. |
[13] | 史月丽, 吴楠, 沈明芳, 董佳群, 庄全超, 江利. CuF2/MoO3/C复合正极的电化学阻抗谱研究[J]. 电化学(中英文), 2013, 19(2): 155-163. |
[14] | 崔聪颖, 马学美, 孔德龙, 马厚义. α型和β型PbO2正极的充放电性能的比较[J]. 电化学(中英文), 2013, 19(1): 43-52. |
[15] | 张亚利, 辛森, 郭玉国, 万立骏. 对工业电池交流内阻测量的讨论(英文)[J]. 电化学(中英文), 2012, 18(3): 205-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||