电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 716-730. doi: 10.13208/j.electrochem.200647
收稿日期:
2020-06-28
修回日期:
2020-08-06
出版日期:
2020-10-28
发布日期:
2020-08-19
通讯作者:
陈人杰
E-mail:chenrj@bit.edu.cn
基金资助:
WEI Zhuang-zhuang, ZHANG Nan-xiang, WU Feng, CHEN Ren-jie*()
Received:
2020-06-28
Revised:
2020-08-06
Published:
2020-10-28
Online:
2020-08-19
Contact:
CHEN Ren-jie
E-mail:chenrj@bit.edu.cn
摘要:
先进储能系统的开发对于满足电动汽车、便携式设备和可再生能源存储不断增长的需求至关重要. 锂硫(Li-S)电池具有比能量高、原材料成本低和环境友好等优点,是新型高性能电池研究领域中的热点. 然而,锂硫电池面向实际应用还存在许多问题,如可溶性多硫化物中间体的穿梭效应、锂枝晶生长以及锂硫电池在使用过程中的热稳定性和安全性等. 设计开发多功能涂层隔膜是改善锂硫电池上述不足的有效策略之一,在本综述中,详细论述了锂硫电池多功能涂层隔膜的研究进展. 包括聚合物材料、碳材料、氧化物材料、催化纳米粒子改性的功能化涂层隔膜及增强电池热稳定性、安全性的特种功能隔膜,对其作用特性进行了系统分析,并对未来研究发展提出展望.
中图分类号:
魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730.
WEI Zhuang-zhuang, ZHANG Nan-xiang, WU Feng, CHEN Ren-jie. Progress and Prospects on Multifunctional Coating Separators for Lithium-Sulfur Battery[J]. Journal of Electrochemistry, 2020, 26(5): 716-730.
[1] | Hu X S, Zou C F, Zhang C P, et al. Technological developments in batteries: a survey of principal roles, types, and management needs[J]. IEEE Power and Energy Magazine, 2017,15(5):20-31. |
[2] |
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017,12(3):194-206.
doi: 10.1038/nnano.2017.16 URL pmid: 28265117 |
[3] |
Li G R, Cai W L, Liu B H, et al. A multifunctional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries[J]. Journal of Power Sources, 2015,294:187-192.
doi: 10.1016/j.jpowsour.2015.06.083 URL |
[4] | Cuisinier M, Cabelguen P E, Adams B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy & Environmental Science, 2014,7(8):2697-2705. |
[5] |
Liu Y D, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy, 2017,2(7):17083.
doi: 10.1038/nenergy.2017.83 URL |
[6] |
Cao R G, Chen J Z, Han K S, et al. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries[J]. Advanced Functional Materials, 2016,26(18):3059-3066.
doi: 10.1002/adfm.201505074 URL |
[7] |
Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012,208:210-224.
doi: 10.1016/j.jpowsour.2012.02.038 URL |
[8] |
Li H, Wu D B, Wu J, et al. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Advanced Materials, 2017,29(44):1703548.
doi: 10.1002/adma.201703548 URL |
[9] |
Yan B, Li X F, Bai Z M, et al. A review of atomic layer deposition providing high performance lithium sulfur batteries[J]. Journal of Power Sources, 2017,338:34-48.
doi: 10.1016/j.jpowsour.2016.10.097 URL |
[10] | Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017,7(24):1700260. |
[11] | Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016,1(9):16132. |
[12] | Li S Y, Wang W P, Duan H, et al. Recent progress on confinement of polysulfides through physical and chemical methods[J]. Journal of Energy Chemistry, 2018,27(6):1555-1565. |
[13] |
Zhuang T Z, Huang J Q, Peng H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2016,12(3):381-389.
doi: 10.1002/smll.201503133 URL pmid: 26641415 |
[14] | Bauer I, Thieme S, Brückner J, et al. Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators[J]. Journal of Power Sources, 2014,251:417-422. |
[15] | Rana M, Li M, He Q, et al. Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020,44:51-60. |
[16] |
Wu F, Ye Y S, Chen R J, et al. Systematic effect for an ultralong cycle lithium-sulfur battery[J]. Nano letters, 2015,15(11):7431-7439.
doi: 10.1021/acs.nanolett.5b02864 URL pmid: 26502268 |
[17] | Chang C H, Chung S H, Manthiram A. Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes[J]. Journal of Materials Chemistry A, 2015,3(37):18829-18834. |
[18] | Duan L, Lu J C, Liu W Y, et al. Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012,414:98-103. |
[19] | Ma G Q, Huang F F, Wen Z Y, et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators[J]. Journal of Materials Chemistry A, 2016,4(43):16968-16974. |
[20] | Shi L, Zeng F L, Cheng X, et al. Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator[J]. Chemical Engineering Journal, 2018,334:305-312. |
[21] | Vizintin A, Lozinsek M, Patel M U M, et al. A selective ion transport by application of the functionalized rGO as the separator in Li-S batteries[C] //The Electrochemical Society, 17th International Meeting on Lithium Batteries (IMLB) Como, Italy, June 10-14, 2014. ECS Meeting Abstracts. IOP Publishing, 2014,3:514. |
[22] |
G. M, Li Zhou L, Wang D W, et al. A flexible sulfur-grap-hene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015,27(4):641-647.
URL pmid: 25377991 |
[23] | Chen G P, Song X, Wang S Q, et al. A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li-S batteries[J]. Journal of Membrane Science, 2018,548:247-253. |
[24] | Pang Y, Wei J S, Wang Y G, et al. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries[J]. Advanced energy materials, 2018,8(10):1702288. |
[25] | Chung S H, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J]. Advanced Functional Materials, 2014,24(33):5299-5306. |
[26] | Zhou X Y, Liao Q C, Tang J J, et al. A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries[J]. Journal of Electroanalytical Chemistry, 2016,768:55-61. |
[27] | Zhai P Y, Peng H J, Cheng X B, et al. Scaled-up fabrication of porous-graphene-modified separators for high - capacity lithium-sulfur batteries[J]. Energy Storage Materials, 2017,7:56-63. |
[28] | Wu F, Qian J, Chen R J, et al. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016,4(43):17033-17041. |
[29] |
Chung S H, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters, 2014,5(11):1978-1983.
doi: 10.1021/jz5006913 URL pmid: 26273884 |
[30] | Hong X D, Li S L, Tang X N, et al. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2018,749:586-593. |
[31] | Zhang H, Tian D X, Zhao Z B, et al. Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium-sulfur batteries[J]. Energy Storage Materials, 2019,21:210-218. |
[32] |
Chen X X, Ding X Y, Wang C S, et al. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries[J]. Nanoscale, 2018,10(28):13694-13701.
doi: 10.1039/c8nr03854f URL pmid: 29989625 |
[33] |
Wei L, Li W L, Zhao T, et al. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries[J]. Chemical Communications, 2020,56(20):3007-3010.
URL pmid: 32048638 |
[34] | Balach J, Jaumann T, Klose M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015,25(33):5285-5291. |
[35] | Li W L, Ye Y S, Qian J, et al. Oxygenated nitrogen-doped microporous nanocarbon as a permselective interlayer for ultrastable lithium-sulfur batteries[J]. ChemElectroChem, 2019,6(4):1094-1100. |
[36] | Wu H W, Huang Y, Zhang W C, et al. Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2017,708:743-750. |
[37] | Zhang Z Y, Lai Y Q, Zhang Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014,129:55-61. |
[38] | Kong W B, Yan L J, Luo Y F, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries[J]. Advanced Functional Materials, 2017,27(18):1606663-1606674. |
[39] |
Yang Z Z, Wang H Y, Lu L, et al. Hierarchical TiO2 spheres as highly efficient polysulfide host for lithium-sulfur batteries[J]. Scientific Reports, 2016,6:22990-22998.
doi: 10.1038/srep22990 URL pmid: 26965058 |
[40] | Qian X Y, Zhao D, Jin L, et al. Hollow spherical lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries[J]. Materials Resear-ch Bulletin, 2017,94:104-112. |
[41] | Guan Y B(官亦标), Li W L(李万隆), Xie X Y(谢潇怡), et al. Preparation of TiO2/CNTs composite coated separator and its application in Li-S battery[J]. Chemical Journal of Chinese Universities-Chinese (高等学校化学学报), 2019,40(3):536-541. |
[42] | Raja M, Kumar T P, Sanjeev G, et al. Montmorillonite-based ceramic membranes as novel lithium-ion battery separators[J]. Ionics, 2014,20(7):943-948. |
[43] | Ahn W, Lim S N, Lee D U, et al. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2015,3(18):9461-9467. |
[44] | Zhao Y, Liu M, Lv W, et al. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery[J]. Nano Energy, 2016,30:1-8. |
[45] | Qian D N, Xu B, Cho H M, et al. Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes[J]. Chemistry of Materials, 2012,24(14):2744-2751. |
[46] | Feng G L, Liu X H, Liu Y N, et al. Trapping polysulfides by chemical adsorption barrier of LixLayTiO3 for enhanced performance in lithium-sulfur batteries[J]. Electrochimica Acta, 2018,283:894-903. |
[47] | Zeng P, Huang L W, Zhang X L, et al. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement[J]. Applied Surface Science, 2018,427:242-252. |
[48] |
Li W L, Qian J, Zhao T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019,6(16):1802362.
doi: 10.1002/advs.201802362 URL pmid: 31453053 |
[49] | Ye Z Q, Jiang Y, Feng T, et al. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries[J]. Nano Energy, 2020,70:104532. |
[50] |
Du Z Z, Guo C K, Wang L J, et al. Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017,9(50):43696-43703.
doi: 10.1021/acsami.7b14195 URL pmid: 29172433 |
[51] | Zhu B, Jin Y, Hu X Z, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Advanced Materials, 2017,29(2):1603755. |
[52] | Xiang Y Y, Wang Z, Qiu W J, et al. Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery[J]. Journal of Membrane Science, 2018,563:380-387. |
[53] |
Zhang Y G, Wang Y G, Luo R J, et al. A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries[J]. Nanoscale Horizons, 2020,5(3):530-540.
URL pmid: 32118209 |
[54] | Sun Z H, Wang T, Zhang Y G, et al. Boosting the electrochemical performance of lithium/sulfur batteries with the carbon nanotube/Fe3O4 coated by carbon modified separator[J]. Electrochimica Acta, 2019, 327: UNSP134843. |
[55] | Xie X S, Liang S Q, Gao J W, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020,13(2):503-510. |
[56] |
Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017,56(27):7764-7768.
doi: 10.1002/anie.201702099 URL pmid: 28466583 |
[57] |
Luo J, Fang C C, Wu N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials, 2018,8(2):1701482.
doi: 10.1002/aenm.v8.2 URL |
[58] | Ye Y, Wang L, Guan L L, et al. A modularly-assembled interlayer to entrap polysulfides and protect lithium metal anode for high areal capacity lithium-sulfur batteries[J]. Energy Storage Materials, 2017,9:126-133. |
[59] | Lu Q, Zou X H, Ran R, et al. An “electronegative” bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and “dendrite-free” Li-S batteries[J]. Journal of Materials Chemistry A, 2019,7(39):22463-22474. |
[60] | Wang L L, Fu S Y, Zhao T, et al. In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life[J]. Journal of Materials Chemistry A, 2020,8(3):1247-1253. |
[61] | Wang Q S, Ping P, Zhao X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012,208:210-224. |
[62] | Song J, Ryou M H, Son B, et al. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries[J]. Electrochimica acta, 2012,85:524-530. |
[63] | Song R S, Fang R P, Wen L, et al. A trilayer separator with dual function for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016,301:179-186. |
[64] | Lee H, Ren X D, Niu C J, et al. Suppressing lithium dendrite growth by metallic coating on a separator[J]. Advanced Functional Materials, 2017,27(45):1704391. |
[65] | Ji W X, Jiang B L, Ai F X, et al. Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries[J]. RSC Advances, 2015,5(1):172-176. |
[66] | Huang X Y, Xue J J, Xiao M, et al. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells[J]. Energy Storage Materials, 2020,30:87-97. |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[6] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[7] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[8] | 李虎东, 贾维尚, 闫新秀, 阳耀月. 定量的复合金属锂作为三维泡沫锂电极用于锂电池的研究[J]. 电化学(中英文), 2022, 28(8): 2202051-. |
[9] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[10] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[11] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[12] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[13] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[14] | 张运丰, 王佳颖, 李晓洁, 赵诗宇, 何阳, 霍士康, 王雅莹, 谭畅. 锂金属电池用三维半互穿网络聚合物电解质的制备[J]. 电化学(中英文), 2021, 27(4): 413-422. |
[15] | 张彪, 帅毅, 王玉, 杨纳川, 陈康华. 碳酸酯类电解液中Mg(NO3)2添加剂抑制锂枝晶生长的研究[J]. 电化学(中英文), 2021, 27(4): 423-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||