电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 639-647. doi: 10.13208/j.electrochem.200644
收稿日期:
2020-06-30
修回日期:
2020-08-02
出版日期:
2020-10-28
发布日期:
2020-08-19
通讯作者:
庞代文
E-mail:dwpang@whu.edu.cn
Received:
2020-06-30
Revised:
2020-08-02
Published:
2020-10-28
Online:
2020-08-19
Contact:
PANG Dai-Wen
E-mail:dwpang@whu.edu.cn
摘要:
作为零维碳基发光纳米材料,碳点是对现有发光纳米材料的重要补充. 精准控制粒径及表面结构对实现碳点的性质调控及其应用至关重要. 本文介绍了本课题组在利用电化学方法研究荧光碳点方面的进展. 重点展示了利用电化学方法实现对碳点粒径的控制,对表面氧化程度的调节以及对其发光机理的研究. 电化学方法可对只有几纳米厚度的材料表面进行有效的控制,可操作性强且经济环保. 通过对碳点的粒径及表面的调控,作者也进一步揭示了碳点的发光与表面结构的相关性. 这些工作为碳点的合成及其性质调控提供了可循的规律,有利于推动碳点在生物医生成像、传感检测、催化及能源转化等领域的应用.
中图分类号:
包蕾, 庞代文. 电化学方法调控荧光碳点的研究[J]. 电化学(中英文), 2020, 26(5): 639-647.
BAO Lei, PANG Dai-Wen. Electrochemical Engineering of Carbon Nanodots[J]. Journal of Electrochemistry, 2020, 26(5): 639-647.
Fig. 1
(A) The schematic illustration of electrochemical set-up to prepare CNDs. (B) UV-vis absorption and fluorescence spectra of blue CNDs (< 5 kD) (left) and (C) yellow CNDs (5 ~ 10 kD) (right) in aqueous solution. (D) Emission spectra of blue CNDs under different excitation wavelengths as indicated. (E) The correlation of fluorescence intensity of CNDs with environmental pH. Reproduced with permission from Ref 30. Copyright 2008 Royal Society of Chemistry.
Fig. 2
(A) The emission spectra of as-prepared 73%CNDs (left) and 64%CNDs (right) under corresponding excitations as indicated. (B) CVs of 64% and 73% carbon paste electrode in 0.1 mol·L-1 NaH2PO4 aqueous solution. Reproduced with permission from Ref 34. Copyright 2012 Royal Society of Chemistry. (C) TEM images of obtained CNDs and a summary of their size under indicated applied potentials. (D) The optimal emission and excitation wavelengths of as-prepared CNDs prepared under different potentials. Reproduced with permission from Ref 33. Copyright 2011 Wiley.
Fig. 3
(A) CVs of a glassy carbon electrode in 0.2 mol·L-1 pH 7.2 phosphate buffer solution containing (solid line) 0.15 mg·mL-1 GQDs: scan direction starting towards positive potentials (left panel) and towards negative potentials (middle panel). Illustrative surface modification of GQDs with indicated moleculars (right panel). Reproduced with permission from Ref 35. Copyright 2015 Royal Society of Chemistry. (B) The emission spectra of CNDs before (left panel) and after (middle panel) further electro-oxidization. Demonstration of CND-luminescence varied with surface oxidation. Reproduced with permission from Ref 33. Copyright 2011 Wiley.
Fig.4
(A) Scheme of CNDs as co-reactants in the anodic ECL of Ru(bpy)32+. Reproduced with permission from Ref 37. Copyright 2014 American Chemical Society. (B) Two types of the mechanism of CND-ECL. Reproduced with permission from Ref 38. Copyright 2018 Elsevier. (C) ECL spectra of CNDs either with different sizes or with different surface oxidation degrees. (D) Illustration showing the impacts of the surface and the size on CND-luminescence. Reproduced with permission from Ref 39. Copyright 2015 Wiley.
[1] |
Chandra S, Das P, Bag S, et al. Synjournal, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles[J]. Nanoscale, 2011,3(4):1533-1540.
doi: 10.1039/c0nr00735h URL pmid: 21293809 |
[2] | Sun Y P, Yang S T, Wang X, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C, 2009,113(42):18110-18114. |
[3] |
Yang S T, Cao l, Sun Y P, et al. Carbon dots for optical imaging in vivo[J]. Journal of the American Chemical Society, 2009,131(32):11308-11309.
URL pmid: 19722643 |
[4] |
Xu X Y, Ray R, Gu YL, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004,126(40):12736-12737.
doi: 10.1021/ja040082h URL pmid: 15469243 |
[5] |
Liu C, Bao L, Tang B, et al. Fluorescence-converging carbon nanodots—hybridized silica nanosphere[J]. Small, 2016,12(34):4702-4706.
doi: 10.1002/smll.201503958 URL pmid: 26972488 |
[6] |
Shi L H, Zhao B, Li X F, et al. Green-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing[J]. Analytical Methods, 2017,9(14):2197-2204.
doi: 10.1039/C7AY00163K URL |
[7] |
Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie International Edition, 2015,54(18):5360-5363.
URL pmid: 25832292 |
[8] | Liu C, Tang B, Zhang S, et al. Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence[J]. The Journal of Physical Chemistry C, 2018,122(6):3662-3668. |
[9] |
Kong B, Zhu A W, Ding CQ, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012,24:5844-5848.
doi: 10.1002/adma.201202599 URL pmid: 22933395 |
[10] |
Shi W, Li X H, Ma H M, et al. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells[J]. Angewandte Chemie International Edition, 2012,51(26):6432-6435.
URL pmid: 22644672 |
[11] | Yuan F L, Yuan T, Sui L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Natural Communications, 2018,9:2249. |
[12] |
Cao L, Sahu S, Anilkumar P, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond[J]. Journal of the American Chemical Society, 2011,133(13):4754-4757.
doi: 10.1021/ja200804h URL pmid: 21401091 |
[13] |
Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010,49(26):4430-4434.
doi: 10.1002/anie.200906154 URL pmid: 20461744 |
[14] |
Shinde B D, Pillai V K. Electrochemical resolution of multiple redox events for graphene quantum dots[J]. Angewandte Chemie International Edition, 2013,52(9):2482-2485.
URL pmid: 23362189 |
[15] | Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012,22(14):2971-2979. |
[16] |
Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011,23(6):776-780.
URL pmid: 21287641 |
[17] |
Li L L, Wu G H, Yang G H, et al. Focusing on luminescent graphene quantum dots: Current status and future perspectives[J]. Nanoscale, 2013,5(10):4015-4039.
URL pmid: 23579482 |
[18] | Zhu S J, Zhang J H, Tang S J, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications[J]. Advanced Functional Materials, 2012,22:4732-4740. |
[19] |
Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012,12(2):844-849.
doi: 10.1021/nl2038979 URL pmid: 22216895 |
[20] |
Feng, T L, Zhu S J, Zeng Q S, et al. Supramolecular cross-link-regulated emission and related applications in polymer carbon dots[J]. ACS Applied Materials & Interfaces, 2018,10(15):12262-12277.
URL pmid: 29164859 |
[21] |
Ding C Q, Zhu A W, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research, 2014,47(1):20-30.
doi: 10.1021/ar400023s URL pmid: 23911118 |
[22] | Hu C(胡超), Mu Y(穆野), Li M Y(李明宇), et al. Recent advances in the synjournal and applications of carbon dots[J]. Acta Physico - Chimica Sinica (物理化学学报), 2019,35(6):572-590. |
[23] | Hola K, Zhang Y, Wang Y, et al. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics[J]. Nano Today, 2014,9(5):590-603. |
[24] |
Fernando K A S, Sahu S, Liu Y M, et al. Carbon quantum dots and applications in photocatalytic energy conversion[J]. ACS Applied Materials & Interfaces, 2015,7(16):8363-8376.
URL pmid: 25845394 |
[25] |
Zheng X T, Ananthanarayanan A, Luo K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small, 2015,11(14):1620-1636.
URL pmid: 25521301 |
[26] |
Liang W X, Bunker C E, Sun Y P. Carbon dots: Zero-dimensional carbon allotrope with unique photoinduced redox characteristics[J]. ACS Omega, 2020,5(2):965-971.
URL pmid: 31984251 |
[27] |
Long Y M, Zhao Q L, Zhang Z L, et al. Electrochemical methods—important means for fabrication of fluorescent nanoparticles[J]. Analyst, 2012,137(4):805-815.
URL pmid: 22189754 |
[28] |
Qi B P, Bao L, Zhang Z L, et al. Electrochemical methods to study photoluminescent carbon nanodots: Preparation, photoluminescence mechanism and sensing[J]. ACS Applied Materials & Interfaces, 2016,8(42):28372-28382.
doi: 10.1021/acsami.5b11551 URL pmid: 26906145 |
[29] | Qi B P(齐宝平), Bao L(包蕾), Long Y M(龙艳敏), et al. Study on the fluorescent carbon nanodots with electrochemical methods[J]. Journal of Electrochemistry (电化学), 2011,17(3):271-276. |
[30] | Zhao Q L, Zhang Z L, Pang D W, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by ele-ctrooxidation of graphite[J]. Chemical Communications, 2008,41:5116-5118. |
[31] |
Lu J, Yang J X, Wang J Z, et al. One-pot synjournal of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009,3(8):2367-2375.
URL pmid: 19702326 |
[32] |
Zhou J G, Booker C, Li R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007,129(4):744-745.
doi: 10.1021/ja0669070 URL pmid: 17243794 |
[33] |
Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism[J]. Advanced Materials, 2011,23(48):5801-5806.
doi: 10.1002/adma.201102866 URL pmid: 22144369 |
[34] | Long Y M, Zhou C H, Zhang Z L, et al. Shifting and non-shifting fluorescence emitted by carbon nanodots[J]. Journal of Materials Chemistry, 2012,22(13):5917-5920. |
[35] | Qi B P, Hu H, Bao L, et al. An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots[J]. Nanoscale, 2015,7(14):5969-5973. |
[36] | Chen Y, Cao Y, Ma C, et al. Carbon-based dots for electrochemiluminescence sensing[J]. Materials Chemistry Frontiers, 2020,4(2):369-385. |
[37] | Long Y M, Bao L, Zhao J Y, et al. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+[J]. Analytical Chemistry, 2014,86(15):7224-7228. |
[38] | Long Y M, Bao L, Peng Y, et al. Self-co-reactant and ion-annihilation electrogenerated chemiluminescence of carbon nanodots[J]. Carbon, 2018,129:168-174. |
[39] |
Bao L, Liu C, Zhang Z L, et al. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning[J]. Advanced Materials, 2015,27(10):1663-1667.
URL pmid: 25589141 |
[40] |
Liu C, Bao L, Yang M L, et al. Surface sensitive photoluminescence of carbon nanodots: Coupling between the carbonyl group and π-electron system[J]. The Journal of Physical Chemistry Letters, 2019,10(13):3621-3629.
URL pmid: 31199162 |
[1] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[2] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[3] | 秦祥, 李仲秋, 潘建斌, 李剑, 王康, 夏兴华. 双极纳米电极阵列实现单个铂纳米颗粒上氢气析出反应的电致化学发光成像[J]. 电化学(中英文), 2021, 27(2): 157-167. |
[4] | 孙琳琳, 王 伟, 陈洪渊. 结合光学成像技术研究单颗粒碰撞电化学[J]. 电化学(中英文), 2019, 25(3): 386-399. |
[5] | 张惠芳, 陈毅挺, 罗 芳, 林振宇, 陈国南. 基于热控电极的电致化学发光传感器的研究进展[J]. 电化学(中英文), 2019, 25(2): 172-184. |
[6] | 陈巧丽,李慧齐,蒋亚琪,谢兆雄. 具特定晶面且大比表面积贵金属纳米晶催化基元的构筑[J]. 电化学(中英文), 2018, 24(6): 602-614. |
[7] | 钟伟强,梁向晖,黄精美. 高烯丙醇和高烯丙胺的电化学合成研究进展[J]. 电化学(中英文), 2017, 23(3): 297-306. |
[8] | 廖 妮,卓 颖,袁 若. 基于花状铂纳米颗粒构建的电致化学发光免疫传感器用于检测载脂蛋白A1[J]. 电化学(中英文), 2016, 22(3): 299-305. |
[9] | 王海军,肖丽娟,何颖,蒋欣亚,袁亚利,卓颖,柴雅琴,袁若*. 共反应试剂增强电致化学发光信号生物传感器[J]. 电化学(中英文), 2015, 21(1): 13-21. |
[10] | 吴梅笙,徐静娟*,陈洪渊. 双极电极-电致化学发光技术在生物分析中的应用[J]. 电化学(中英文), 2015, 21(1): 1-7. |
[11] | 李玲玲, 卢倩, 朱俊杰. 基于量子点的电致化学发光免疫传感器研究进展[J]. 电化学(中英文), 2013, 19(2): 103-109. |
[12] | 黄丽, 汪宜娴, Michael V. Mirkin, 任斌, 詹东平. 基于琼脂支撑的液/液界面上AgTCNQ的电化学合成[J]. 电化学(中英文), 2012, 18(5): 405-409. |
[13] | 齐宝平, 龙艳敏, 包蕾, 刘翠, 张志凌, 庞代文. 电化学方法在荧光碳点研究中的应用[J]. 电化学(中英文), 2011, 17(3): 271-277. |
[14] | 姜艳霞, 田娜, 周志有, 陈声培, 孙世刚, . 纳米材料电催化进展——电催化剂表面结构调控与性能[J]. 电化学(中英文), 2009, 15(4): 359-370. |
[15] | 冯兴丽;黄明湖;张晓凯;黄绍鑫;潘伟;马厚义;. 聚合物保护贵金属纳米粒子的相转移技术[J]. 电化学(中英文), 2006, 12(4): 403-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||