电化学(中英文) ›› 2020, Vol. 26 ›› Issue (3): 359-369. doi: 10.13208/j.electrochem.190305
毛庆1*(), 李冰玉1, 景维云1, 赵健1, 刘松2, 黄延强2*(), 杜兆龙3
收稿日期:
2019-03-05
修回日期:
2019-04-08
出版日期:
2020-06-28
发布日期:
2019-04-12
通讯作者:
毛庆,黄延强
E-mail:maoqing@dlut.edu.cn;yqhuang@dicp.ac.cn
基金资助:
MAO Qing1*(), LI Bing-yu1, JING Wei-yun1, ZHAO Jian1, LIU Song2, HUANG Yan-qiang2*(), DU Zhao-long3
Received:
2019-03-05
Revised:
2019-04-08
Published:
2020-06-28
Online:
2019-04-12
Contact:
MAO Qing,HUANG Yan-qiang
E-mail:maoqing@dlut.edu.cn;yqhuang@dicp.ac.cn
摘要:
电化学还原CO2可实现CO2的资源化转化,是缓解因其过度排放所导致诸多环境问题的关键技术. 本文提出了一种膜电极(membrane electrode assembly,MEA)构型CO2还原电解单池的结构设计,可同步实现气体扩散阴极两侧CO2的供给与电解质液层的更新. 基于该MEA构型电解池,实验考察了电解质液层中KHCO3浓度和更新与否对氮掺杂石墨烯锚定的Ni电极表面CO2电还原制备CO的反应活性、产物分布与稳定性的影响. 结果表明,若电流密度低于5 mA·cm-2,KHCO3浓度显著影响电解电势而非产物分布. CO2还原电解单池在稳定运行中存在着“可逆”与“不可逆”两种衰减模式. 其中,阴极/电解质界面处催化剂的流失是 “不可逆”衰减形成的原因;而电解质液层中KHCO3溶液的流失导致了MEA构型CO2还原单池的“可逆”衰减,周期性更新KHCO3电解质是降低其“可逆”衰减的有效方法.
中图分类号:
毛庆, 李冰玉, 景维云, 赵健, 刘松, 黄延强, 杜兆龙. 膜电极构型CO2还原电解单池的稳定性研究[J]. 电化学(中英文), 2020, 26(3): 359-369.
MAO Qing, LI Bing-yu, JING Wei-yun, ZHAO Jian, LIU Song, HUANG Yan-qiang, DU Zhao-long. Stability Studies for a Membrane Electrode Assembly Type CO2 Electro-Reduction Electrolytic Cell[J]. Journal of Electrochemistry, 2020, 26(3): 359-369.
[1] | Jing W Y( 景维云), Mao Q( 毛庆), Shi Y( 石越), et al. Research progress of electro-catalytic reduction of CO2 to hydrocarbons[J]. Chemical Industry and Engineering Progressl( 化工进展), 2017,36(6):2150-2157. |
[2] | Wang F Y( 王付燕), Sun H Z( 孙洪志), Song M X( 孙洪志), et al. Research progress of ammoniation reaction of carbon dioxide[J]. Chemical Industry and Engineering Progressl( 化工进展), 2014,33(1):209-212. |
[3] | Zhao D( 赵丹), Wang Wen Z( 王文珍), Jia X G( 贾新刚), et al. Progress in synjournal of organic carbonates and polycarbonates from carbon dioxide[J]. Modern Chemical Industryl( 现代化工). 2015,35(7):32-36. |
[4] | Yu Y M( 于英民). Supercritical carbon dioxide catalytic hydrogenation to formic acid on the immobilized ruthenium catalyst[D]. Zhejiang Universityl( 浙江大学), 2006. |
[5] | Niu L( 牛量), Yu T( 于涛), Zhang X( 张晓), et al. Research process in catalysts for carbon dioxide reforming of methane to synjournal gas[J]. Journal of Jilin Institute of Chemical Technologyl( 吉林化工学院学报), 2018,35(11):8-13. |
[6] |
Liu R, Tian H F, Yang A M, et al. Preparation of HZSM-5 membrane packed CuO-ZnO-Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether[J]. Applied Surface Science, 2015,345:1-9.
doi: 10.1016/j.apsusc.2015.03.125 URL |
[7] |
Lingampalli S R, Monis Ayyub M, Magesh G, et al. Photocatalytic reduction of CO2 by employing Zno/Ag1-X CuX/Cds and related heterostructures[J]. Chemical Physics Letters, 2018,691:28-32.
doi: 10.1016/j.cplett.2017.10.048 URL |
[8] |
Byoungsu K, Sichao M, Huei-Ru M J, et al. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer[J]. Electrochimica Acta, 2015,166:271-276.
doi: 10.1016/j.electacta.2015.03.064 URL |
[9] |
Li B, Niu W, Cheng Y, et al. Preparation of Cu2O modified TiO2, nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH[J]. Chemical Physics Letters, 2018,700:57-63.
doi: 10.1016/j.cplett.2018.03.049 URL |
[10] |
He J F, Johnson N J J, Huang A X. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018,11(1):48-57.
doi: 10.1002/cssc.201701825 URL pmid: 29205925 |
[11] |
Wen G B, Li D U, Ren B H, et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production[J]. Advanced Energy Materials, 2018,8(31):1802427.
doi: 10.1002/aenm.v8.31 URL |
[12] |
Saberi S T, Mepham A, Zheng X, et al. High-density nanosharp microstructures enable efficient CO2, electroreduction[J]. Nano Letters, 2016,16(11):7224-7228.
URL pmid: 27736080 |
[13] |
Yang H B, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018,3(2):140-147.
doi: 10.1038/s41560-017-0078-8 URL |
[14] |
Yang W F, Ma W S, Zhang Z H, et al. Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO2 reduction[J]. Faraday Discussions, 2018,210:289-299.
doi: 10.1039/c8fd00056e URL pmid: 29974912 |
[15] |
Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015,54(7):2146-2150.
doi: 10.1002/anie.201410233 URL pmid: 25537315 |
[16] |
Mao Q, Sun G Q, Wang S L, et al. Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes[J]. Electrochimica Acta, 2007,52(24):6763-770.
doi: 10.1016/j.electacta.2007.04.120 URL |
[17] |
Carmo M, Fritz D L, Merge J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013,38(12):4901-4934.
doi: 10.1016/j.ijhydene.2013.01.151 URL |
[18] | Delacourt C, Ridgway P L, Kerr J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society . 2008,155(1):B42-B49. |
[19] |
Delacourt C, Newman J. Mathematical modeling of CO2 reduction to CO in aqueous electrolytes II. Study of an electrolysis cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society . 2010,157(12):B1911-B1926.
doi: 10.1149/1.3502533 URL |
[20] | Lee W, Kim Y E, Youn M H, et al. Catholyte-free electrocatalytic CO2 reduction into formate[J]. Angewandte Chemie International Edition, 2018,57(22):6883-6887. |
[21] |
Subramanian K, Asokan K, Jeevarathinam D, et al. Electrochemical membrane reactor for the reduction of carbondioxide to formate[J]. Journal of Applied Electrochemistry. 2007,37(2):255-260.
doi: 10.1007/s10800-006-9252-6 URL |
[22] |
Innocent B, Liaigre D, Pasquier D, et al. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium[J]. Journal of Applied Electrochemistry. 2009,39(2):227-232.
doi: 10.1007/s10800-008-9658-4 URL |
[23] |
Wu J, Risalvato F G, Ke F, et al. Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the horiivity and activity with Sn electrode[J]. Journal of The Electrochemical Society, 2012,159(7):F353-F359.
doi: 10.1149/2.049207jes URL |
[24] |
Wu J, Risalvato F G, Sharma P P, et al. Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of low temperature full electrochemical cells[J]. Journal of The Electrochemical Society, 2013,160(9):F953-F957.
doi: 10.1149/2.030309jes URL |
[25] |
Wu J, Risalvato F G, Ma S, et al. Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell[J]. Journal of Materials Chemistry A, 2014,2(6):1647-1651.
doi: 10.1039/c3ta13544f URL |
[26] |
Alves V A, Da Silva L A, Boodts J. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and faradaic impedance investigation of the oxygen evolution reaction from alkaline solution[J]. Electrochimica Acta, 1998,44(8/9):1525-1534.
doi: 10.1016/S0013-4686(98)00276-X URL |
[27] |
Zhong H, Fujii K, Nakano Y. Effect of KHCO3 concentration on electrochemical reduction of CO2 on copper electrode[J]. Journal of The Electrochemical Society, 2017,164(9):F923-F927.
doi: 10.1149/2.0601709jes URL |
[28] | Hashiba H, Weng C, Chen Y, et al. Effects of electrolyte buffer capacity on surface reactant species and reaction rate of CO2 in electrochemical CO2 reduction[J]. Journal of Physical Chemistry C, 2018,122(7):3719-3726. |
[29] | Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 2006,64(1):123-127. |
[30] | Hori Y, Murata A, Takahashi R. Cheminform abstract: formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. ChemInform, 1990,21(2):2309-2326. |
[31] | Hori Y. Electrochemical CO2 reduction on metal electrodes[M]. Modern Aspects of Electrochemistry, 2008,42:89-189. |
[32] | Büchi F N, Inaba M, Schmidt T J. Polymer electrolyte fuel cell durability[M]. New York, Springer, 2009: 235. |
[1] | 汤亚飞, 武安祺, 韩贝贝, 刘华, 包善军, 林王林, 陈铭, 官万兵, Subhash C. Singhal. 以掺氢天然气为燃料直接内重整固体氧化物电池堆的稳定性[J]. 电化学(中英文), 2024, 30(1): 2314001-. |
[2] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[3] | 汪恒吉, 陈文国, 全周益, 赵凯, 孙毅飞, 陈旻, 奥坚科·弗拉基米尔. 多孔陶瓷支撑型管式固体氧化物电解池性能研究[J]. 电化学(中英文), 2023, 29(12): 2204131-. |
[4] | 倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010-. |
[5] | 应方, 许珊珊, 许燕冰, 梁苗苗, 李剑锋. Fe3O4磁性纳米颗粒催化电化学降解土霉素的研究[J]. 电化学(中英文), 2022, 28(4): 2107141-. |
[6] | 王越, 张立敏, 田阳. 基于电化学分子探针合理设计的高选择性长程活体分析[J]. 电化学(中英文), 2022, 28(3): 2108451-. |
[7] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[8] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[9] | 李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613. |
[10] | 代红艳, 杨慧敏, 刘宪, 宋秀丽, 梁镇海. MoS2/GQDs催化剂的制备及微生物电解池的产氢性能研究[J]. 电化学(中英文), 2021, 27(4): 429-438. |
[11] | 彭浩, 孙惠军, 周志有, 申琳璠, 黄龙, 曹烁晖, 孙世刚. 基于硅基硼掺金刚石电极的电化学-原位核磁共振波谱电解池的设计、制备与可行性研究[J]. 电化学(中英文), 2021, 27(3): 332-338. |
[12] | 黄夏敏, 张丽红, 吴顺情, 杨勇, 朱梓忠. ANiN(A = Li, Na, Mg, Ca)的结构、热力学、弹性和电子性质的第一性原理研究[J]. 电化学(中英文), 2021, 27(3): 339-350. |
[13] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[14] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
[15] | 张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||