电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 253-261. doi: 10.13208/j.electrochem.191146
收稿日期:
2019-12-11
修回日期:
2020-01-13
出版日期:
2020-04-28
发布日期:
2020-02-14
通讯作者:
谢奎
E-mail:kxie@fjirsm.ac.cn
基金资助:
Received:
2019-12-11
Revised:
2020-01-13
Published:
2020-04-28
Online:
2020-02-14
Contact:
XIE Kui
E-mail:kxie@fjirsm.ac.cn
摘要:
固体氧化物电解池可高效地电解H2O/CO2制备燃料,越来越受到人们的重视. 本文对近年来在燃料电极(阴极)材料方面的研究进展进行了全面综述,指出各种阴极材料的优缺点及发展趋势,强调亟待解决的关键科学与技术问题.
中图分类号:
叶灵婷, 谢奎. 氧离子传导型固体氧化物电解池燃料电极的研究进展[J]. 电化学(中英文), 2020, 26(2): 253-261.
YE Ling-ting, XIE Kui. Research Progress of Fuel Electrode in Oxide-Ion Conducting Solid Oxide Electrolysers[J]. Journal of Electrochemistry, 2020, 26(2): 253-261.
表1
不同阴极材料的性能比较
Cathode material | Temperature/oC | Voltage/V | Current density/(A·cm-2) | Reference |
---|---|---|---|---|
Ni/YSZ | 750 | 1.29 | 0.29 | [28] |
Cu/La0.75Sr0.25Cr0.5Mn0.5O3-δ | 750 | 1.65 | 1.82 | [39] |
La0.75Sr0.25Cr0.5Mn0.5O3-δ | 850 | 1.7 | 0.75 | [44] |
La0.2Sr0.8Ti0.9Mn0.1O3+δ | 800 | 2.0 | 0.25 | [54] |
Sr1-xPrxFeO3-δ | 800 | 2.0 | 1.64 | [55] |
(La0.2Sr0.8)0.95Ti0.85Mn0.1Ni0.05O3+δ | 800 | 2.0 | 0.87 | [56] |
Fe/FeV2O4 | 800 | 1.5 | 0.12 | [60] |
[1] | Li Y H( 李一航), Xia C R( 夏长荣 ). Recent advances of CO2 electrochemical reduction in solid oxide electrolysis cells[J]. Journal of Electrochemistry( 电化学), 2019,25(2): DOI: 10.13208/j.electrochem.191141. |
[2] | Zhang L X, Hu S Q, Zhu X F , et al. Electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2017,26(4):593-601. |
[3] | Chen L, Chen F L, Xia C R . Direct synjournal of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014,7(12):4018-4022. |
[4] |
Mathiesen B, Lund H, Karlsson K . 100% Renewable energy systems, climate mitigation and economic growth[J]. Applied Energy, 2011,88(2):488-501.
doi: 10.1016/j.apenergy.2010.03.001 URL |
[5] |
Zhao C( 赵晨欢), Zhang W Q( 张文强), Yu B( 于波 ), et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry( 化学进展), 2016,28(8):1265-1288.
doi: 10.7536/PC151105 URL |
[6] | Kaur G, Kulkarni AP, Giddey S , et al. Ceramic composite cathodes for CO2, conversion to CO in solid oxide electrolysis cells[J]. Applied Energy, 2018,221:131-138. |
[7] | Zheng Y, Wang J C, Yu B . A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology[J]. Chemical Society Reviews, 2017,46(5):1427-1463. |
[8] |
Qiao J L, Liu Y Y, Hong F , et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631-675.
doi: 10.1039/C3CS60323G URL |
[9] | Oloman C, Li H . Electrochemical processing of carbon dioxide[J]. ChemSuschem, 2008,1(5):385-391. |
[10] |
Gao D F, Zhang Y, Zhou Z W , et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017,139(16):5652-5655.
doi: 10.1021/jacs.7b00102 URL |
[11] |
Wang W Y, Gan L Z, Lemmon J P , et al. Enhanced carbon dioxide electrolysis at redox manipulated interfaces[J]. Nature Communications, 2019,10:1550.
doi: 10.1038/s41467-019-09568-1 URL |
[12] |
Lu J H, Zhu C L, Pan C C , et al. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser[J]. Science Advances, 2018, 4(3): eaar5100.
doi: 10.1126/sciadv.aar5100 URL |
[13] |
Ye L T, Hu X L, Wang X , et al. Enhanced CO2 electrolysis with SrTiO3 cathode through dual doping strategy[J]. Journal of Materials Chemistry A, 2019,7(6):2764-2772.
doi: 10.1039/C8TA10188D URL |
[14] |
Pellegrini LA, Soave G, Gamba S , et al. Economic analysis of a combined energy-methanol production plant[J]. Applied Energy, 2011,88(12):4891-4897.
doi: 10.1016/j.apenergy.2011.06.028 URL |
[15] |
Zhu C L, Hou S S, Hu X L , et al. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer[J]. Nature Communications, 2019,10:1173.
doi: 10.1038/s41467-019-09083-3 URL |
[16] | Han M F, Fan H, Peng S P . H2O/CO2 co-electrolysis in solid oxide electrolysis cells[J]. Engineering Sciences, 2014, 12(1)1:43-50. |
[17] | Jiao F, Pan X L, Gong K , et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angewandte Chemie International Edition, 2018,57(17):4692-4696. |
[18] |
Herring J S, James EO’Brien, Stoots CM , et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy, 2007,32(4):440-450.
doi: 10.1016/j.ijhydene.2006.06.061 URL |
[19] | Laosiripojana N, Assabumrungrat S . Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria[J]. Journal of Power Sources, 2006,158(2):1348-1357. |
[20] | Liu M, Aravind P V, Woudstra T , et al. Development of an integrated gasifier-solid oxide fuel cell test system: A detailed system study[J]. Journal of Power Sources, 2011,196(17):7277-7289. |
[21] | Ishihara T, Jirathiwathanakul N, Zhong H . Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte[J]. Energy & Environmental Science, 2010,3(5):665-672. |
[22] | Ishihara T, Matsushita S, Sakai T , et al. Intermediate temperature solid oxide electrolysis cell using LaGaO3[J]. Solid State Ionics, 2012,255(4):77-80. |
[23] | Guan J, Doshi R, Lear G , et al. Ceramic oxygen generators with thin-film zirconia electrolytes[J]. Journal of the American Ceramic Society, 2004,85(11):2651-2654. |
[24] |
Tao G, Sridhar K R, Chan C . Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part I. Pt/YSZ interface[J]. Solid State Ionics, 2004,175(1/4):615-619.
doi: 10.1016/j.ssi.2004.01.077 URL |
[25] | Tao G, Sridhar K R, Chan C L . Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface[J]. Solid State Ionics, 2004,175(1/4):621-624. |
[26] | Hauch A, Ebbesen S D, Jensen S H , et al. Highly efficient high temperature electrolysis[J]. Journal of Materials Che-mistry, 2008,18(20):2331-2340. |
[27] |
Hauch A, Mogensen M, Hagen A . Ni/YSZ electrode de-gradation studied by impedance spectroscopy-effect of p(H2O)[J]. Solid State Ionics, 2011,192(1):547-551.
doi: 10.1016/j.ssi.2010.01.004 URL |
[28] |
Kim S D, Seo D W, Dorai A K , et al. The effect of gas compositions on the performance and durability of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013,38(16):6569-6576.
doi: 10.1016/j.ijhydene.2013.03.115 URL |
[29] |
Keane M, Fan H, Han M F , et al. Role of initial microstructure on nickel-YSZ cathode degradation in solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2014,39(33):18718-18726.
doi: 10.1016/j.ijhydene.2014.09.057 URL |
[30] | Bostani B, Ahmadi NP, Yazdani S , et al. Co-electrodeposition of functionally graded Ni-NCZ (nickel coated ZrO2) composite coating[J]. Journal of Materials Engineering & Performance, 2016,26(2):1-9. |
[31] |
Jensen S H, Larsen P H, Mogensen M . Hydrogen and synthetic fuel production from renewable energy sources[J]. International Journal of Hydrogen Energy, 2007,32(15):3253-3257.
doi: 10.1016/j.ijhydene.2007.04.042 URL |
[32] |
Ebbesen S D, Mogensen M . Electrolysis of carbon dioxide in solid oxide electrolysis cells[J]. Journal of Power Sources, 2009,193(1):349-358.
doi: 10.1016/j.jpowsour.2009.02.093 URL |
[33] | Singh V, Muroyama H, Matsui T , et al. Performance comparison between Ni-SDC and Ni-YSZ Cermet electrodes for carbon dioxide electrolysis on solid oxide electrolysis cell[J]. ECS Transactions, 2014,64(2):53-64. |
[34] |
Ebbesen S D, Graves C, Mogensen M . Production of synthetic fuels by co-electrolysis of steam and carbon dioxide[J]. International Journal of Green Energy, 2009,6(6):646-660.
doi: 10.1080/15435070903372577 URL |
[35] |
Mahmood A, Bano S, Yu J H , et al. Effect of operating conditions on the performance of solid electrolyte membrane reactor for steam and CO2 electrolysis[J]. Journal of Membrane Science, 2015,473:8-15.
doi: 10.1016/j.memsci.2014.09.002 URL |
[36] | Bierschenk D M, Wilson J R, Barnett S A . High efficiency electrical energy storage using a methane-oxygen solid oxide cell[J]. Energy & Environmental Science, 2011,4(3):944-951. |
[37] |
Nishida R, Puengjinda P, Nishino H , et al. High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni-Co dispersed ceria hydrogen electrodes[J]. RSC Advances, 2014,4(31):16260-16266.
doi: 10.1039/C3RA47089J URL |
[38] |
Gaudillere C, Navarrete L, Serra J . Syngas production at intermediate temperature through H2O and CO2 electrolysis with a Cu-based solid oxide electrolyzer cell[J]. International Journal of Hydrogen Energy, 2014,39(7):3047-3054.
doi: 10.1016/j.ijhydene.2013.12.045 URL |
[39] |
Xing R M, Wang Y R, Zhu Y Q , et al. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ-Cu ceramic composite electrode[J]. Journal of Power Sources, 2015,274:260-264.
doi: 10.1016/j.jpowsour.2014.10.066 URL |
[40] |
Yang X, Irvine J T S . (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam[J]. Journal of Materials Chemistry, 2008,18(20):2349-2354.
doi: 10.1039/b800163d URL |
[41] |
Tao S, Irvine J . Synjournal and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of The Electrochemical Society, 2004,151(2):A252-A259.
doi: 10.1149/1.1639161 URL |
[42] |
Tietz F, Sebold D, Brisse A , et al. Degradation phenomena in a solid oxide electrolysis cell after 9000h of operation[J]. Journal of Power Sources, 2013,223:129-135.
doi: 10.1016/j.jpowsour.2012.09.061 URL |
[43] | Gan L Z, Ye L T, Tao S W , et al. Titanate cathodes with enhanced electrical properties b achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis[J]. Physical Chemistry Chemical Physics, 2016,18(4):3137-3143. |
[44] | Torrell M, García-Rodríguez S, Morata A , et al. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas[J]. Faraday Discussions, 2015,182:241-255. |
[45] | Zhu C L, Hou L X, Li S S , et al. Efficient carbon dioxide electrolysis with metal nanoparticles loaded La0.75Sr0.25Cr0.5-Mn0.5O3-δ cathodes[J]. Journal of Power Sources, 2017,363:177-184. |
[46] | Ruan C, Xie K, Yang L , et al. Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on nanocatalyst-loaded chromate electrodes[J]. International Journal of Hydrogen Energy, 2014,39(20):10338-10348. |
[47] | Morales R, Carlos J, Vázquez C , et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation[J]. Nature, 2006,439(7076):568-571. |
[48] | Marina O, Canfield N, Stevenson J . Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics, 2002,149(1/2):21-28. |
[49] | Li X, Zhao H L, Zhou X O , et al. Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010,35(15):7913-7918. |
[50] | Tsekouras G, Irvine J T S . The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis[J]. Journal of Materials Chemistry, 2011,21(25):9367-9376. |
[51] | Xie K, Zhang Y Q, Meng G Y , et al. Direct synjournal of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser[J]. Energy & Environmental Science, 2011,4(6):2218-2222. |
[52] | Li Y X, Zhou J E, Dong D H , et al. Composite fuel electrode La0.2Sr0.8TiO3-δ-Ce0.8Sm0.2O2-δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser[J]. Physical Chemistry Chemical Physics, 2012,14(44):15547-15553. |
[53] | Li S S, Li Y X, Gan Y , et al. Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3+δ, composite cathode[J]. Journal of Power Sources, 2012,218:244-249. |
[54] | Qi W T, Gan Y, Yin D , et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis[J]. Journal of Materials Chemistry A, 2014,2(19):6904-6915. |
[55] | Li Z, Li S S, Tseng CJ , et al. Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser[J]. Electrochimica Acta, 2017,229:48-54. |
[56] | Ye L T, Zhang M Y, Huang P , et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017,8:14785. |
[57] | Miller D N, Irvine J T S . B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes[J]. Journal of Power Sources, 2011,196(17):7323-7327. |
[58] | Neagu D, Tsekouras G, Miller DN , et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry, 2013,5(11):916-923. |
[59] | Xu S S, Dong D H, Wang Y , et al. Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis[J]. Journal of Power Sources, 2014,246(3):346-355. |
[60] | Gan L Z, Ye L T, Ruan C , et al. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer[J]. Advanced Science, 2016,3(2):1500186. |
[61] | Li S S, Qin Q Q, Xie K , et al. High-performance fuel electrodes based on NbTi0.5M0.5O4 (M = Ni, Cu) with rever-sible exsolution of the nano-catalyst for steam electrolysis[J]. Journal of Materials Chemistry A, 2013,1(31):8984-8993. |
[62] | Shin T H, Myung J H, Verbraeken M , et al. Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor[J]. Faraday Discussions, 2015,182:227-239. |
[63] | Ye L T, Pan C C, Zhang M Y , et al. Highly efficient CO2 electrolysis on cathodes with exsolved alkaline earth oxide nanostructures[J]. ACS Applied Materials & Interfaces, 2017,9(30):25350-25357. |
[1] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[2] | 汪恒吉, 陈文国, 全周益, 赵凯, 孙毅飞, 陈旻, 奥坚科·弗拉基米尔. 多孔陶瓷支撑型管式固体氧化物电解池性能研究[J]. 电化学(中英文), 2023, 29(12): 2204131-. |
[3] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[4] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
[5] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||