[1] Tian J Q, Liu Q, Cheng N Y, et al. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water[J]. Angewandte Chemie International Edition, 2014, 53(36): 9577-9581.
[2] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
[3] Xu Y F, Gao M R, Zheng Y R, et al. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen[J]. Angewandte Chemie International Edition, 2013, 52(33): 8546-8550.
[4] Tian J Q, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. Journal of The American Chemical Society, 2014, 136: 7587-7590.
[5] Liu T T, Liu Q, Asiri A M, et al. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions[J]. Chemical
Communications, 2015, 51(93): 16683-16686.
[6] Liu D N, Lu Q, Luo Y L, et al. NiCO2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity[J]. Nanoscale, 2015, 7(37): 15122-15126.
[7] Jiang P, Liu Q, Ge C J, et al. CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2014, 2(35): 14634-14640.
[8] Tang C, Gan L F, Zhang R, et al. Ternary FexCo1-xP nano-wire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight[J]. Nano Letters, 2016, 16(10): 6617-6621.
[9] Kong D S, Cha J J, Wang H T, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy & Environmental Science, 2013, 6(12): 3553-3558.
[10] Gao X H, Zhang H X, Li Q G, et al. Hierarchical NiCO2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie International Edition, 2016, 55(21): 6290-6294.
[11] Lu J J, Yin S B, Shen P K. Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction[J]. Electrochemical Energy Reviews, 2018, 2(1): 105-127.
[12] Ma Z Y, Li Z C, Li S H, et al. Nanostructured Ni2N thin films magnetron-sputtered on nickel foam as efficient electrocatalyst for hydrogen evolution reaction[J]. Materials Letters, 2018, 229: 148-151.
[13] Shalom M, Ressnig D, Yang X F, et al. Nickel nitride as an efficient electrocatalyst for water splitting[J]. Journal of Materials Chemistry A, 2015, 3(15): 8171-8177.
[14] Chen J G G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities[J]. Chemical Reviews, 1996, 96(4): 1477-1498.
[15] Shalom M, Molinari V, Esposito D, et al. Sponge-like nickel and nickel nitride structures for catalytic applications[J]. Advanced Materials, 2014, 26(8): 1272-1276.
[16] Cao B F, Veith G M, Neuefeind J C, et al. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(51): 19186-19192.
[17] Chen W F, Sasaki K, Ma C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angewandte Chemie International Edition, 2012, 51(25): 6131-6135.
[18] Choi J G, Brenner J R, Colling C W, et al. Sybthesis and characterization of molybdenum nitride hydrodenitro genation catalysis[J]. Catalysis Today, 1992, 15(2): 201-222.
[19] Oyama S T. Kinetics of ammonia decomposition on vanadium nitride[J]. Journal of Catalysis, 1992, 133(2): 358-369.
[20] Xu H T, Wan J, Zhang H J, et al. A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks[J]. Advanced Energy Materials, 2018, 8(23): 1800575.
[21] Lim B, Jiang M J, Camargo P H C, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932): 1302-1305.
[22] Chen A C, Holt-Hindle P. Platinum-based nanostructured materials: synthesis, properties, and applications[J]. Chemical Reviews, 2010, 110(6): 3767-3804.
[23] Kuttiyiel K A, Sasaki K, Chen W F, et al. Core-shell, hollow-structured iridium-nickel nitride nanoparticles for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2014, 2(3): 591-594.
[24] Huang T Z, Mao S, Zhou G H, et al. Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction[J]. Nanoscale, 2014, 6(16): 9608-9613.
[25] Xu Y L, Wang J, Shen L F, et al. One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors[J]. Electrochimica Acta, 2015, 173: 680-686.
[26] Sun Q, Fu Z W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries[J]. Electro-chimica Acta, 2008, 54(2): 403-409.
[27] Glaser A, Surnev S, Netzer F P, et al. Oxidation of vanadium nitride and titanium nitride coatings[J]. Surface Science, 2007, 601(4): 1153-1159.
[28] Glushenkov A M, Hulicova-Jurcakova D, Llewellyn D, et al. Structure and capacitive properties of porous nano-
crystalline VN prepared by temperature-programmed ammonia reduction Of V2O5[J]. Chemistry of Materials, 2010, 22(3): 914-921.
[29] Zhou X P, Chen H Y, Shu D, et al. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material[J]. Journal of Physics and Chemistry of Solids, 2009, 70(2): 495-500.
[30] Bondarenka V, Grebinskij S, Mickevicius S, et al. Determination of vanadium valence in hydrated compounds[J]. Journal of Alloys and Compounds, 2004, 382(1/2): 239-243.
[31] Mendialdua J, Casanova R, Barbaux Y. XPS Studies of V2O5, V6O13, VO2 and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena 1995, 71(3): 249-261.
[32] Muratore C, Bultman J E, Aouadi S M, et al. In situ Raman spectroscopy for examination of high temperature tribological processes[J]. Wear, 2011, 270(3/4): 140-145.
[33] Huang T Z, Mao S, Zhou G H, et al. Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction[J]. Nanoscale, 2014, 6(16): 9608-9613.
[34] Shalom M, Ressnig D, Yang X, et al. Nickel nitride as an efficient electrocatalyst for water splitting[J]. Journal of Materials Chemistry A, 2015, 3(15): 8171-8177.
[35] Liu L, Zhang H J, Yang J, et al. Self-assembled novel dandelion-like NiCO2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(44): 22393-22403.
[36] Jing S Y, Zhang L S, Luo L, et al. N-Doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction[J]. Applied Catalysis B - Environmental, 2018, 224: 533-540.
[37] Zhang B, Xiao C H, Xie S M, et al. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting[J]. Chemistry of Materials, 2016, 28(19): 6934-6941.
[38] Zhu Y P, Chen G, Zhong Y J, et al. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst[J]. Advanced Science, 2018, 5(2): 1700603.
[39] Choi B G, Chang S J, Lee Y B, et al. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries[J]. Nanoscale, 2012, 4(19): 5924-5930.
[40] Mahmood N, Zhang C Z, Hou Y L. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries[J]. Small, 2013, 9(8): 1321-1328.
[41] Zhang L S, Lu J J, Yin S B, et al. One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction[J]. Applied Catalysis B - Environmental, 2018, 230: 58-64.
[42] Jing S Y, Lu J J, Yu G T, et al. Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution[J]. Advanced Materials, 2018, 30(28): 1705979.
[43] Jing S Y, Wang D R, Yin S B, et al. P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 298: 142-149.
[44] Lu J J, Zhang L S, Jing S Y, et al. Remarkably efficient PtRh alloyed with nanoscale WC for hydrogen evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5993-5999.
[45] Li G N, Li L, Yuan H Y, et al. Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets[J]. Journal of Colloid and Interface Science, 2017, 495: 19-26.
[46] Galesic I, Kolbesen B O. Formation of vanadium nitride by rapid thermal processing[J]. Thin Solid Films, 1999, 349(1/2): 14-18.
[47] Meng F L, Fang Z G, Li Z X, et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(24): 7235-7241.
[48] Mahmood N, Zhang C Z, Liu F, et al. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode[J]. ACS Nano, 2013, 7(11): 10307-10318. |