[1] Wang H L, Dai H J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J]. Chemical Society Reviews, 2013, 42(7): 3088-3113.
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[3] Stein A. Energy storage: Batteries take charge[J]. Nature Nanotechnology, 2011, 6(5): 262-263.
[4] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[5] Liao L, Peng H L, Liu Z F. Chemistry makes graphene beyond grapheme[J]. Journal of the American Chemical Society, 2014, 136(35): 12194-12200.
[6] Novoselov K S, Geim A K, Morozov S V, et al. Electricfield effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[7] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Letters, 2008, 8(3): 902-907.
[8] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008, 321(5887): 385-388.
[9] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[10] Dai B Y, Fu L, Zou Z Y, et al. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer grapheme[J]. Nature Communications, 2011, 2: 522.
[11] Zhang C H, Fu L, Liu N, et al. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Advanced Materials, 2011, 23(8): 1020-1024.
[12] Guo S J, Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672.
[13] Leng K, Zhang F, Zhang L, et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance[J]. Nano Research, 2013, 6(8): 581-592.
[14] Chen Y J, Zhu J, Qu B H, et al. Graphene improving lithium-ion battery performance by construction of NiCO2O4/graphene hybrid nanosheet arrays[J]. Nano Energy, 2014, 3: 88-94.
[15] Zhu J, Zhang G H, Yu X Z, et al. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries[J]. Nano Energy, 2014, 3: 80-87.
[16] Zhu J, Lei D N, Zhang G H, et al. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries[J]. Nano-
scale, 2013, 5(12): 5499-5505.
[17] Lu B G, Li T, Zhao H T, et al. Graphene-based composite materials beneficial to wound healing[J]. Nanoscale, 2012, 4(9): 2978-2982.
[18] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[19] Mao S, Lu G H, Chen J H. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015, 7(16): 6924-6943.
[20] Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors[J]. Advanced Materials, 2011, 23(25): 2833-2838.
[21] Niu Z Q, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24(30): 4144-4150.
[22] Li C, Shi G Q. Three-dimensional graphene architectures[J]. Nanoscale, 2012, 4(18): 5549-5563.
[23] Wang X B, Zhang Y J, Zhi C Y, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors[J]. Nature Communications, 2013, 4: 2905.
[24] Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[25] Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012, 6(5): 4020-
4028.
[26] Lin M C, Gong M, Lu B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 324-328.
[27] Yu X Z, Wang B, Gong D C, et al. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries[J]. Advanced materials, 2017, 29(4): 1604118.
[28] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(6): 366-377.
[29] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[30] Luo J S, Liu J L, Zeng Z Y, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano Letters, 2013, 13(12): 6136-6143.
[31] Wang C D, Chui Y S, Ma R G, et al. A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(35): 10092-10098.
[32] Sun, H Y, Liu Y G, Yu Y L, et al. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries[J]. Electrochimica Acta, 2014, 118: 1-9.
[33] Zhang Q F, Xu Z, Lu B G. Strongly coupled MoS2-3D graphene materials for ultrafast charge slow discharge LIBs and water splitting applications[J]. Energy Storage Materials, 2016, 4: 84-91.
[34] Zhu H, Wu X Z, Zan L, et al. Three-dimensional macroporous graphene-Li2FeSiO4 composite as cathode material for lithium-ion batteries with superior electrochemical performances[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11724-11733.
[35] Son, I H, Park J H, Park S, et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J]. Nature Communications, 2017, 8: 1561.
[36] Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
[37] Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rehargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.
[38] Xi K, Kidambi P R, Chen R J, et al. Binder free three-dimensional sulphur/few-layer grpahene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries[J]. Nanoscale, 2014, 6(11): 5746-5753.
[39] Zhou G M, Li L, Ma C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11: 356-365.
[40] Hu G J, Xu C, Sun Z H, et al. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries[J]. Advanced materials, 2016, 28(8): 1603-1609.
[41] Xu J T, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12): 2042-2048.
[42] Liu Y G, Cheng Z Y, Sun H Y, et al. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode[J]. Journal of Power Sources, 2015, 273: 878-884.
[43] Liu S Y, Zhu Y G, Xie J, et al. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries[J]. Advanced Energy Materials, 2014, 4(9): 1301960.
[44] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[45] Dong X C, Wang X W, Wang L, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon, 2012, 50(13): 4865-4870.
[46] Wang W, Guo S R, Penchev M, et al. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors[J]. Nano Energy, 2013, 2(2): 294-303.
[47] He Y M, Chen W J, Li X D, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1): 174-182.
[48] Yu X Z, Lu B A, Xu Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes[J]. Advanced Materials, 2014, 26(7): 1044-1051.
[49] Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.
[50] Chen K, Shi L R, Zhang Y F, et al. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications[J]. Chemical Society Reviews, 2018, 47(9): 3018-3036.
[51] Aurbach D, Suresh G S, Levi E, et al. Progress in rechargeable magnesium battery technology[J]. Advanced Materials, 2007, 19(23): 4260-4267.
[52] Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727.
[53] Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications[J]. Chemical Society Reviews, 2013, 42(2): 794-830.
[54] Crowder S W, Prasai D, Rath R, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2013, 5(10): 4171-4176.
[55] Kim B J, Yang G, Park M J, et al. Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes[J]. Applied Physics Letters, 2013, 102(16): 161902.
|