[1] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946.
[2] Wu H B, Chen J S, Hng H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
[3] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[5] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science, 2011, 4(9): 3287-3295.
[6] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society, 2001, 148(8): A803-A811.
[7] Hong S Y, Kim Y, Park Y, et al. Charge carriers in rechar-
geable batteries: Na ions vs. Li ions[J]. Energy & Environmental Science, 2013, 6(7): 2067-2081.
[8] Kundu D, Talaie E, Duffort V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11): 3431-3448.
[9] Wang J Y, Yang N L, Tang H J, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2013, 52(25): 6417-6420.
[10] Ren S H, Zhao X G, Chen R Y, et al. A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries[J]. Journal of Power Sources, 2014, 260: 205-210.
[11] Sekhar B C, Packiyalakshmi P, Kalaiselvi N. Custom designed ZnMn2O4/nitrogen doped graphene composite anode validated for sodium ion battery application[J]. RSC Advances, 2017, 7(32): 20057-20061.
[12] Yuan C Z, Wu H B, Xie Y, et al. Mixed transition-metal oxides: design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504.
[13] Zhang W M, Cao P, Li L, et al. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 348: 599-607.
[14] Shen L, Yu L, Yu X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J]. Angewandte Chemie International Edition, 2015, 54(6): 1868-1872.
[15] Yuan S(袁双), Zhu Y H(朱云海), Wang S(王赛), et al. Micro/nano-structured electrode materials for sodium-ion batteries[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 464-476.
[16] Zhou W(周文), Lu X F(卢雪峰), Wu M M(吴明娒), et al. Template-assisted hydrothermal synthesis of NiO@Co3O4 hollow spheres with hierarchical porous surfaces for supercapacitor applications[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 513-520.
[17] Duan S Y(段舒怡), Zhang W(张伟), Piao J Y(朴俊宇), et al. Uniform nanoshells for functional materials: Constructions and applications[J]. Journal of Electrochemistry(电化学), 2016, 22(3): 260-270.
[18] Chen J F, Ru Q, Mo Y D, et al. Design and synthesis of hollow NiCo2O4 nanoboxes as anode for lithium-ion and sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(28): 18949-18957.
[19] Choi J S, Lee H J, Ha J K, et al. Synthesis and electrochemical properties of amorphous carbon coated Sn anode material for lithium ion batteries and sodium ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(9): 6459-6462.
[20] Che Q, Zhang F, Zhang X G, et al. Preparation of ordered mesoporous carbon/NiCo2O4 electrode and its electrochemical capacitive behavior[J]. Acta Physico-Chimica Sinica, 2012, 28(4): 837-842.
[21] Zhou D, Li X, Fan L Z, et al. Three-dimensional porous graphene-encapsulated CNT@ SnO2 composite for high-performance lithium and sodium storage[J]. Electrochimica Acta, 2017, 230: 212-221.
[22] Zhang R F, Wang Y K, Zhou H, et al. Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries[J]. Nanotechnology, 2018, 29(22): 225401.
[23] Jiang H(江恒), Fan J M(范镜敏), Zheng M S(郑明森), et al. Co3(HCOO)6@rGO as a promising anode for lithium ion batteries[J]. Journal of Electrochemistry(电化学), 2018, 24(3): 207-215.
[24] Cai D P, Qu B H, Li Q H, et al. Reduced graphene oxide uniformly anchored with ultrafine CoMn2O4 nanoparticles as advance anode materials for lithium and sodium storage[J]. Journal of Alloys and Compounds, 2017, 716: 30-36.
[25] Zou F, Chen Y M, Liu K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage[J]. ACS Nano, 2016, 10(1): 377-386.
[26] Zeng L Z, Zhang W G, Xia P, et al. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 102: 351-356.
[27] Ren M M, Li F Y, Xu H, et al. CoO/CoFe2O4 bi-component nanorod core with S-doped carbon shell as excellent anode for lithium ion battery[J]. Journal of Alloys and Compounds, 2018, 737: 442-447.
[28] Huang G, Zhang F F, Zhang L L, et al. Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(21): 8048-8053.
[29] Ma Y, Ma Y J, Geiger D, et al. ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries[J]. Nano Energy, 2017, 42: 341-352.
[30] Xu J M, He L, Wang Y J, et al. Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2016, 191: 417-425.
[31] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[32] Shan H, Xiong D B, Li X F, et al. Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries[J]. Applied Surface Science, 2016, 364: 651-659.
[33] Li J F, Xiong S L, Li X W, et al. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasihollow spheres with improved lithium storage properties[J]. Nanoscale, 2013, 5(5): 2045-2054.
[34] Huang J R, Wang W, Lin X R, et al. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes[J]. Journal of Power Sources, 2018, 378: 677-684.
[35] Yu Z X, Li X F, Yan B, et al. Rational design of flower-like tin sulfide@ reduced graphene oxide for high performance sodium ion batteries[J]. Materials Research Bulletin, 2017, 96: 516-523.
[36] Maiti S, Pramanik A, Dhawa T, et al. Bi-metal organic framework derived nickel manganese oxide spinel for lithium-ion battery anode[J]. Materials Science and Engineering B - Advanced Functional Solid-State Materials, 2018, 229: 27-36.
[37] Li F, Ma J Y, Ren H J, et al. Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries[J]. Materials Letters, 2017, 206: 132-
135.
[38] Chang L, Wang K, Huang L G, et al. Hierarchically porous CoNiO2 nanosheet array films with superior sodium storage performance[J]. New Journal of Chemistry, 2017, 41(23): 14072-14075.
[39] Sekhar B C, Packiyalakshmi P, Kalaiselvi N. Custom designed ZnMn2O4/nitrogen doped graphene composite anode validated for sodium ion battery application[J]. RSC Advances, 2017, 7(32): 20057-20061.
[40] Kou H R, Li X F, Shan H, et al. An optimized Al2O3 layer for enhancing the anode performance of NiCo2O4 nanosheets for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(34): 17881-17888.
[41] Wu X H, Wu W W, Wang K T, et al. Synthesis and electrochemical performance of flower-like MnCo2O4 as an anode material for sodium ion batteries[J]. Materials Letters, 2015, 147: 85-87.
[42] Wu Z Y, Li X F, Tai L M, et al. Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 646: 1009-1014.
[43] Yang M, Li X F, Yan B, et al. Reduced graphene oxide decorated porous SnO2 nanotubes with enhanced sodium storage[J]. Journal of Alloys and Compounds, 2017, 710: 323-330.
|