电化学(中英文) ›› 2019, Vol. 25 ›› Issue (1): 122-136. doi: 10.13208/j.electrochem.180306
李钊1,孙现众1,2,* ,刘文杰1,张熊1,2,王凯1,2,马衍伟1,2,*
收稿日期:
2018-03-06
修回日期:
2018-04-18
发布日期:
2019-02-28
出版日期:
2019-02-28
通讯作者:
孙现众,马衍伟
E-mail:xzsun@mail.iee.ac.cn, ywma@mail.iee.ac.cn
基金资助:
LI Zhao1, SUN Xian-zhong1,2*, LIU Wen-Jie1, ZHANG Xiong1,2, WANG Kai1,2, MA Yan-wei1,2*
Received:
2018-03-06
Revised:
2018-04-18
Online:
2019-02-28
Published:
2019-02-28
Contact:
SUN Xian-zhong, MA Yan-wei
E-mail:xzsun@mail.iee.ac.cn, ywma@mail.iee.ac.cn
Supported by:
摘要: 锂离子电容器是一种应用前景广阔的电化学储能器件. 目前,活性炭作为锂离子电容器正极被广泛使用. 然而,锂离子电容器负极却有多种不同选择,如硬碳和软碳等碳材料. 本文使用两种具有不同结构和电化学特性的硬碳和软碳材料作为锂离子电容器负极,进行了对比研究. 研究表明,软碳相比于硬碳有更好的电子导电性和更高的可逆容量. 通过在电流范围0.1 ~ 12 A·g-1下进行充放电测试,分别研究了两种碳基电极在不同涂覆厚度下的倍率性能. 结果显示,硬碳电极在大电流下有更好的倍率特性. 然后,以活性炭为正极,预嵌锂的硬碳和软碳为负极,锂片为锂源和参比电极,分别组装了三电极软包锂离子电容器. 根据三电极充放电测试,分别研究了不同预嵌锂量的硬碳和软碳所组装的锂离子电容器的电化学性能. 结果表明,合适的负极预嵌锂容量可以提升锂电容的能量密度、功率密度和循环稳定性. 最后,大容量硬碳和软碳基软包锂离子电容器被分别组装,软碳基锂电容实现了最高的能量密度21.2 Wh·kg-1(基于整个器件质量),硬碳基锂电容实现最高的功率密度5.1 kW·kg-1.
中图分类号:
李钊, 孙现众, 刘文杰, 张熊, 王凯, 马衍伟. 预嵌锂硬碳和软碳用于锂离子电容器负极的比较研究[J]. 电化学(中英文), 2019, 25(1): 122-136.
LI Zhao, SUN Xian-zhong, LIU Wen-Jie, ZHANG Xiong, WANG Kai, MA Yan-wei. A Comparative Study of Pre-Lithiated Hard Carbon and Soft Carbon as Anodes for Lithium-Ion Capacitors[J]. Journal of Electrochemistry, 2019, 25(1): 122-136.
[1] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[2] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[3] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[4] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[5] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[6] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[7] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[8] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[9] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[10] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[11] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[12] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[13] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[14] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[15] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||