[1] Li H(李泓), Lv Y C(吕迎春). Short review on electrochemical energy storage[J]. Journal of Electrochemistry(电化学), 2015, 21(5): 412-424.
[2] Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070.
[3] Lu J, Chen Z H, Ma Z F, et al. The role of nanotechnology in the development of battery materials for electric vehicles[J]. Nature Nanotechnology, 2016, 11(12): 1031-1038.
[4] Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489.
[5] Lin D(林顿), Zhang X Y(张熙悦), Zeng Y X(曾银香), et al. Recent advances on carbon and transition metallic compound electrodes for high-performance supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 560-580.
[6] Li B, Zheng J S, Zhang H Y, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials, 2018, 30(17): 1705670.
[7] Sun X Z(孙现众), Zhang X(张熊), Wang K(王凯), et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 586-603.
[8] Li Z, Sun X Z, Li C, et al. Application of mesoporous graphene/carbon black composite conductive additive in lithium-ion capacitor anode[J]. Energy Storage Science and Technology, 2017, 6(6): 1264-1272.
[9] Lang J W, Zhang X, Wang R T, et al. Strategies to enhance energy density for supercapacitors[J]. Journal of Electrochemistry, 2017, 23(5): 507-532.
[10] Sivakkumar S R, Nerkar J Y, Pandolfo A G. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors[J]. Electrochimica Acta, 2010, 55(9): 3330-3335.
[11] Sivakkumar S R, Pandolfo A G. Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors[J]. Journal of Applied Ele-
ctrochemistry, 2014, 44(1): 105-113.
[12] Zhang J, Shi Z Q, Wang J, et al. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance[J]. Journal of Electroanalytical Chemistry, 2015, 747: 2028.
[13] Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593.
[14] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society, 2001, 148(8): A803-A811.
[15] Liang J(梁骥), Wen L(闻雷), Cheng H M(成会明), et al. Applications of carbon materials in electrochemical energy storage[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 505-517.
[16] Sivakkumar S R, Pandolfo A G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65: 280-287.
[17] Decaux C, Lota G, Raymundo-Pinero E, et al. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte[J]. Electrochimica Acta, 2012, 86: 282-286.
[18] Sivakkumar S R, Milev A S, Pandolfo A G. Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors[J]. Electrochimica Acta, 2011, 56(27): 9700-9706.
[19] Kim J H, Kim J S, Lim Y G, et al. Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors[J]. Journal of Power Sources, 2011, 196(23): 10490-10495.
[20] Gourdin G, Smith P H, Jiang T, et al. Lithiation of amorphous carbon negative electrode for Li ion capacitor[J]. Journal of Electroanalytical Chemistry, 2013, 688: 103-112.
[21] Schroeder M, Winter M, Passerini S, et al. On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material[J]. Journal of Power Sources, 2013, 238: 388-394.
[22] Schroeder M, Menne S, Segalini J, et al. Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors[J]. Journal of Power Sources, 2014, 266: 250-258.
[23] Sun X Z, Zhang X, Huang B, et al. (LiNi0.5Co0.2Mn0.3O2+ AC)/graphite hybrid energy storage device with high specific energy and high rate capability[J]. Journal of Power Sources, 2013, 243: 361-368.
[24] Sun X Z, Zhang X, Zhang H T, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources, 2014, 270: 318-325.
[25] Park M S, Lim Y G, Kim J H, et al. A novel lithium-doping approach for an advanced lithium ion capacitor[J]. Advanced Energy Materials, 2011, 1(6): 1002-1006.
[26] Schroeder M, Winter M, Passerini S, et al. On the use of soft carbon and propylene carbonate-based electrolytes in lithium-ion capacitors[J]. Journal of The Electrochemical Society, 2012, 159(8): A1240-A1245.
[27] Ni J F, Huang Y Y, Gao L J. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. Journal of Power Sources, 2013, 223: 306-311.
[28] Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J]. Materials Characterization, 2013, 85: 111-123.
[29] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291.
[30] Jin J, Shi Z Q, Wang C Y. Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries[J]. Electrochimica Acta, 2014, 141: 302-310.
[31] Irisarri E, Ponrouch A, Palacin M R. Review-hard carbon negative electrode materials for sodium-ion batteries[J]. Journal of The Electrochemical Society, 2015, 162(14): A2476-A2482.
[32] Xing W B, Dahn J R. Study of irreversible capacities for Li insertion in hard and graphitic carbons[J]. Journal of The Electrochemical Society, 1997, 144(4): 1195-1201.
[33] Beguin F, Chevallier F, Vix C, et al. A better understanding of the irreversible lithium insertion mechanisms in disordered carbons[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2/3): 211-217.
[34] Sun X Z, Zhang X, Liu W J, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor[J]. Electrochimica Acta, 2017, 235: 158-166.
[35] W J Cao, Greenleaf M, Li Y X, et al. The effect of lithium loadings on anode to the voltage drop during charge and discharge of Li-ion capacitors[J]. Journal of Power Sources, 2015, 280: 600-605.
[36] Zhang J, Liu X F, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142.
[37] Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, et al. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy[J]. Physical Che-
mistry Chemical Physics, 2011, 13(20): 9083-9118.
[38] Sun X Z, Zhang X, Wang K, et al. Temperature effect on electrochemical performances of Li-ion hybrid capacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(8): 2501-2506. |