欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2018, Vol. 24 ›› Issue (5): 409-426.  doi: 10.13208/j.electrochem.180146

• 电化学获奖人优秀论文专辑 • 上一篇    下一篇

高性能析氧电催化剂的设计策略

唐堂,江文杰,牛帅,胡劲松*   

  1. 中国科学院化学研究所, 中国科学院分子纳米结构与纳米技术重点实验室,北京 100190
  • 收稿日期:2018-06-12 修回日期:2018-07-04 出版日期:2018-10-28 发布日期:2018-07-20
  • 通讯作者: 胡劲松 E-mail:hujs@iccas.ac.cn

Design Strategies toward Highly Active Electrocatalysts for Oxygen Evolution Reaction

TANG Tang, JIANG Wen-jie, NIU Shuai, HU Jin-song*   

  1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research /Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
  • Received:2018-06-12 Revised:2018-07-04 Published:2018-10-28 Online:2018-07-20
  • Contact: HU Jing-song E-mail:hujs@iccas.ac.cn
  • Supported by:
    This work was supported by the National Key Project on Basic Research (No. 2015CB932302), National Natural Science Foundation of China (No. 21773263 and No. 91645123) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020100).

摘要: 电催化水分解反应是可以实现规模化制取氢气的一种重要绿色无污染的手段,但是其效率极大地受制于阳极析氧反应. 因此,发展廉价、高效的析氧反应催化剂是当下的研究热点. 通过分析决定析氧反应催化活性的因素,本综述总结了低成本、高效、稳定的析氧电催化剂的一些通用设计与制备策略,包括:1)通过电子结构调控、结晶度调控、相调控、缺陷位调控以及自旋态调控提升单个催化活性位点的本征催化活性;2)设计与构筑先进电极结构,以实现活性位点数量最大化,获得大电流下稳定的电极材料. 进而,选取了一些具有代表性的高效析氧催化剂作为例子来阐述这些策略的实用性. 最后,对高效、可在大电流密度下稳定工作的析氧催化剂的理性设计、可控制备和发展方向提出了展望,以期为新型高性能析氧催化剂的设计提供指导.

关键词: 析氧反应, 电解水, 电催化剂, 设计策略, 制氢

Abstract: Electrocatalytic water splitting is pivotal for efficient and economical production of hydrogen and oxygen gasses. However, the efficiency of the whole device is largely limited by the oxygen evolution reaction (OER) at the anode due to its sluggish kinetics. Thus, it is imperative to develop inexpensive, highly active OER catalysts to lower the reaction barriers. By examining the underlying critical factors for OER performance, this review outlines general principles for designing efficient nanosized OER catalysts, including (1) enhancing the intrinsic activity of active site by electronic modulation, crystallinity modulation, phase control, defect engineering and spin state engineering; (2) designing appropriate micro/meso/macro structure with high electrical conductivity and mechanical stability to maximize the quantity of accessible active sites, and to promote electron transfer during OER process, as well as to achieve high durability especially at high current density. A series of highly efficient OER catalysts developed by our and other groups are then exemplified to demonstrate the guidance of these principles. At last, some perspectives are highlighted in the further development of efficient OER electrocatalysts, of which can contribute greatly to the achievement in large-scale commercialization of electrocatalytic water-splitting technology.

Key words: oxygen evolution reaction, water splitting, electrocatalysts, design principles, hydrogen production

中图分类号: