[1] Pan H L, Hu Y S, Chen L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[2] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[3] Li H(李慧), Wu C(吴川), Wu F(吴锋), et al. Sodium Ion Battery: A promising energy-storage candidate for supporting renewable electricity[J]. Acta Chimica Sinica(化学学报), 2014, 72(1): 21-29.
[4] Fang Z(方铮), Cao Y L(曹余良), Hu Y S(胡勇胜), et al. Economic analysis for room-temperature sodium-ion battery technologies. Energy Storage Science and Technology(储能科学与技术), 2016, 5(2): 149-158.
[5] Hong S Y, Kim Y, Park Y, et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions[J]. Energy & Environmental Science, 2013, 6(7): 2067-2081.
[6] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[7] Ponrouch A, Marchante E, Courty M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9):8572-8583.
[8] Jang J Y , Kim H, Lee Y, et al. Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries. Electrochemistry Communications, 2014, 44: 74-77.
[9] Zhou X S, Guo Y G. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries[J]. ChemElectroChem, 2014, 1(1): 83-86.
[10] Zhang J F(张京飞), Lu J(陆 静), Yang X Y(杨晓宇), et al. Synthesis of porous carbon nanosheets and its application in sodium-ion battery[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 548-553.
[12] Li X, Wu D, Zhou Y N, et al. O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries[J]. Electrochemistry Communications, 2014, 49: 51-54.
[13] Komaba S, Yabuuchi N, Nakayama T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11): 6211-20.
[15] Yu H, Guo S, Zhu Y, et al. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chemical Communications, 2014, 50(4): 457-459.
[16] Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867.
[17] Yabuuchi N, Yano M, Yoshida H, et al. Synthesis and electrode performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries[J]. Journal of the Electrochemical Society, 2013, 160(5): A3131-A3137.
[18] Talaie E, Duffort V, Smith H L, et al. Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability[J]. Energy & Environmental Science, 2015, 8(8): 2512-2523.
[19] Chen J, Huang Z, Wang C, et al. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries[J]. Chemical Communications, 2015, 51(48): 9809-9812.
[20] Allen J L, McOwen D W, Delp S A, et al. N-Alkyl-N-methylpyrrolidinium difluoro(oxalato)borate ionic liquids: Physical/electrochemical properties and Al corrosion[J]. Journal of Power Sources, 2013, 237: 104-111.
[21] Erickson E M, Markevich E, Salitra G, et al. Review-development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions[J]. Journal of The Electrochemical Society, 2015, 162(14): A2424-A2438.
[22] Zheng S Y, Zhong G M, McDonald M J, et al. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries[J]. Journal of Materials Chemistry A, 2016,4(23):9054-9062.
[23] Xu S D(徐守冬), Zhuang Q C(庄全超), Shi Y L(史月丽), et al. Electrochemical impedance spectra of intercalation compound electrodes: models and theoretical simulations[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(10): 2353-2359.
[24] Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428.
[25] Chen Z H, Liu J, Amine K. Lithium difluoro(oxalato)borate as salt for lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2007, 10(3): A45-A47. |