电化学(中英文) ›› 2016, Vol. 22 ›› Issue (6): 553-560. doi: 10.13208/j.electrochem.160566
• 界面电化学近期研究专辑(厦门大学 毛秉伟教授) • 上一篇 下一篇
李念武,殷雅侠,郭玉国*
收稿日期:
2016-07-08
修回日期:
2016-08-08
出版日期:
2016-12-28
发布日期:
2016-08-12
通讯作者:
郭玉国
E-mail:ygguo@iccas.ac.cn
基金资助:
国家自然科学基金项目(51225204, U1301244),国家重点研发计划项目(2016YFB0100100),中国科学院先导项目(XDA09010300)资助
LI Nian-wu, YIN Ya-xia, GUO Yu-guo*
Received:
2016-07-08
Revised:
2016-08-08
Published:
2016-12-28
Online:
2016-08-12
Contact:
GUO Yu-guo
E-mail:ygguo@iccas.ac.cn
摘要:
由于硫(硒)的导电性差、多硫(硒)化物的溶解、硫(硒)的体积膨胀、锂枝晶等问题,导致构建稳定的界面成为锂硫(硒)电池面临的重大挑战. 本文介绍了锂硫(硒)电池的研究进展,并以本课题组的研究工作为主,着重讨论了纳米限域效应、化学成键、界面吸附、表面包覆、电解液优化、负极改进等技术方案在锂硫(硒)电池中构建稳定界面的可行性.
中图分类号:
李念武,殷雅侠,郭玉国. 锂硫(硒)电池中的界面问题与解决途径[J]. 电化学(中英文), 2016, 22(6): 553-560.
LI Nian-wu, YIN Ya-xia, GUO Yu-guo. Lithium-Sulfur (Selenium) Batteries: Interface Issues and Solving Strategies[J]. Journal of Electrochemistry, 2016, 22(6): 553-560.
[1] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(2): 19-29. [2] Cao R G, Xu W, Lv D P, et al. Anodes for rechargeable lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16). [3] Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry., 2010, 20(44): 9821-9826. [4] Manthiram A, Chung S-H, Zu C. Lithium-Sulfur batteries: progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006. [5] Manthiram A, Fu Y, Chung S-H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. [6] Song M K, Cairns E J, Zhang Y G. Lithium/sulfur batteries with high specific energy: old challenges and new opportunities[J]. Nanoscale, 2013, 5(6): 2186-2204. [7] Wang J L, He Y S, Yang J. Sulfur-Based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015, 27(3): 569-575. [8] Yang C P, Yin Y X, Guo Y G. Elemental selenium for electrochemical energy storage[J]. Journal of Physical Chemistry Letters, 2015, 6(2): 256-266. [9] Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. [10] Yin Y X, Xin S, Guo Y G, et al. Lithium-Sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200. [11] Ma J, Hu P, Cui G, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries[J]. Chemistry of Materials, 2016, 28(11): 3578-3606. [12] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. [13] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513. [14] Li Z, Yuan L X, Yi Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials, 2014, 4(7). [15] Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531-1537. [16] Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6602-6608. [17] Zheng S Y, Han P, Han Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientificc Repports-Uk, 2014, 4. [18] Zheng S Y, Wen Y, Zhu Y J, et al. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes[J]. Advanced Energy Materials, 2014, 4(16). [19] Xin S, Yin Y X, Wan L J, et al. Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan[J]. Particle & Particle Systems Characterization, 2013, 30(4): 321-325. [20] Yang C P, Xin S, Yin Y X, et al. An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries[J]. Angewandte Chemie-International Edition, 2013, 52(32): 8363-8367. [21] Liu Y X, Si L, Zhou X S, et al. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries[J]. Journal of Materials Chemistry A, 2014, 2(42): 17735-17739. [22] Ye H, Yin Y X, Zhang S F, et al. Advanced Se-C nanocomposites: a bifunctional electrode material for both Li-Se and Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(33): 13293-13298. [23] Zeng L, Zeng W, Jiang Y, et al. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries[J]. Advanced Energy Materials, 2015, 5(4), Doi: 10.1002/aenm.201401377. [24] Li X N, Liang J W, Zhang K L, et al. Amorphous S-rich S1-xSex/C (x <= 0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte[J]. Energy & Environmental Science, 2015, 8(11): 3181-3186. [25] Wang J L, Yang J, Wan C R, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6): 487-492. [26] Fanous J, Wegner M, Grimminger J, et al. Structure-Related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(22): 5024-5028. [27] Wang L, He X M, Li J J, et al. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 22077-22081. [28] Guo J, Wen Z, Wang Q, et al. A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life[J]. Journal of Materials Chemistry A, 2015, 3(39): 19815-19821. [29] Yin L C, Wang J L, Yu X L, et al. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries[J]. Chemical Communications, 2012, 48(63): 7868-7870. [30] Yin L C, Wang J L, Lin F J, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries[J]. Energy & Environmental Science, 2012, 5(5): 6966-6972. [31] Li N W, Yin Y X, Guo Y G. Three-dimensional sandwich-type graphene@microporous carbon architecture for lithium-sulfur batteries[J]. Rsc Advances, 2016, 6(1): 617-622. [32] Yang C P, Yin Y X, Ye H, et al. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8789-8795. [33] Wang X, Gao Y, Wang J, et al. Chemical adsorption: another way to anchor polysulfides[J]. Nano Energy, 2015, 12: 810-815. [34] Wang Z, Dong Y, Li H, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5: 5002. [35] Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014, 5: 4759. [36] Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with conducting magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9): 5288-5294. [37] Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015, 6: 5682. [38] Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016, 7: 11203. [39] Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525. [40] Qiu Y, Li W, Zhao W, et al. High-Rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters, 2014, 14(8): 4821-4827. [41] Tang C, Zhang Q, Zhao M-Q, et al. Nitrogen-Doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105. [42] Chen H W, Wang C H, Dai Y F, et al. Rational design of cathode structure for high rate performance lithium-sulfur batteries[J]. Nano Letters, 2015, 15(8): 5443-5448. [43] Du W C, Yin Y X, Zeng X X, et al. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3584-3590. [44] You Y, Zeng W C, Yin Y X, et al. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(9): 4799-4802. [45] Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18): 2891-2898. [46] Ding B, Shen L, Xu G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery[J]. Electrochimica Acta, 2013, 107(0): 78-84. [47] Yang Y, Yu G H, Cha J J, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating[J]. Acs Nano, 2011, 5(11): 9187-9193. [48] Li N W, Zheng M B, Lu H L, et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications, 2012, 48(34): 4106-4108. [49] Li G C, Li G R, Ye S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245. [50] Song M K, Zhang Y G, Cairns E J. A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance[J]. Nano Letters, 2013, 13(12): 5891-5899. [51] Wang L, Wang D, Zhang F X, et al. Interface chemistry guided long-cycle-life Li-S battery[J]. Nano Letters, 2013, 13(9): 4206-4211. [52] Chung S-H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357. [53] Seh Z W, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331. [54] Zhang J, Ye H, Yin Y X, et al. Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2014, 23(3): 308-314. [55] Ma G, Wen Z, Jin J, et al. Enhancement of long stability of Li-S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode[J]. Rsc Advances, 2014, 4(41): 21612-21618. [56] Ma G, Wen Z, Jin J, et al. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2(27): 10350-10354. [57] Wu F, Lee J T, Nitta N, et al. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: mechanisms of performance enhancement[J]. Advanced Materials, 2015, 27(1): 101-108. [58] Yan Y(颜洋), Yin Y X(殷雅侠), Guo Y G(郭玉国), et al. Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries[J]. Science China-Chemistry(中国科学 化学), 2014, 57(11): 1564-1569. [59] Suo L M, Hu Y S, Li H, et al. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481. [60] Zheng J M, Gu M, Chen H H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(29): 8464-8470. [61] Yan Y, Yin Y X, Xin S, et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte[J]. Electrochimica Acta, 2013, 91: 58-61. [62] Cheng X B, Peng H J, Huang J Q, et al. Dendrite-Free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263. [63] Zhang X L, Wang W K, Wang A B, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2(30): 11660-11665. [64] Huang C, Xiao J, Shao Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications, 2014, 5: 3015. [65] Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. [66] Wu M F, Wen Z Y, Liu Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries[J]. Journal of Power Sources, 2011, 196(19): 8091-8097. [67] Ma G Q, Wen Z Y, Wu M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chemical Communications, 2014, 50(91): 14209-14212. [68] Yang C-P, Yin Y-X, Zhang S-F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058. [69] Liang Z, Zheng G, Liu C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916. |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 方建军, 杜宇豪, 李子健, 樊文光, 任恒宇, 易浩聪, 赵庆贺, 潘锋. 高电压LiCoO2的表面结构与性能:回顾与展望[J]. 电化学(中英文), 2024, 30(6): 2314005-. |
[3] | 杨丽芳, 陈俊杰, 陈灵玉, 金思琪, 方韬雄, 何思佳, 沈粮骏, 黄新建, 孙霄航, 邓海强. 微纳米尺度两互不相溶电解质溶液界面的单颗粒碰撞电化学[J]. 电化学(中英文), 2024, 30(11): 2414005-. |
[4] | 马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101-. |
[5] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
[6] | 庄永斌, 程俊. 基于从头算分子动力学的金属/氧化物-水界面能带排列[J]. 电化学(中英文), 2023, 29(7): 2216001-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[9] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[10] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[11] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[12] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[13] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[14] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
[15] | 乔行, 朱勇, 孙升, 张统一. 电解液中Cu(111)晶面电溶解/沉积势垒施加电荷相关性的跨尺度计算[J]. 电化学(中英文), 2023, 29(10): 2205171-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||