1. Sharaf, O Z & Orhan, M F An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews[J], 2014, 32: 810-853.
2. Steele, B C H & Heinzel, A Materials for fuel-cell technologies. Nature[J], 2001, 414(6861): 345-352.
3. Debe, M K Electrocatalyst approaches and challenges for automotive fuel cells. Nature[J], 2012, 486(7401): 43-51.
4. Badwal, S, Giddey, S, Kulkarni, A et al. Direct ethanol fuel cells for transport and stationary applications–A comprehensive review. Applied Energy[J], 2015, 145: 80-103.
5. Wang, W, Su, C, Wu, Y et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chemical Reviews[J], 2013, 113(10): 8104-8151.
6. Wu, G, More, K L, Johnston, C M et al. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science[J], 2011, 332(6028): 443-447.
7. Cui, C, Gan, L, Heggen, M et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials[J], 2013, 12(8): 765-771.
8. Yu, W, Porosoff, M D & Chen, J G Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chemical Reviews[J], 2012, 112(11): 5780-5817.
9. Wang, D, Xin, H L, Hovden, R et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials[J], 2013, 12(1): 81-87.
10. Sasaki, K, Naohara, H, Cai, Y et al. Core‐Protected Platinum Monolayer Shell High‐Stability Electrocatalysts for Fuel‐Cell Cathodes. Angewandte Chemie International Edition[J], 2010, 49(46): 8602-8607.
11. Wang, G W, Huang, B, Xiao, L et al. Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society[J], 2014, 136(27): 9643-9649.
12. Chen, C, Kang, Y J, Huo, Z Y et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science[J], 2014, 343(6177): 1339-1343.
13. Holewinski, A, Idrobo, J C & Linic, S High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction. Nature Chemistry[J], 2014, 6(9): 828-834.
14. Kuttiyiel, K A, Sasaki, K, Su, D et al. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications[J], 2014, 5: 8.
15. Lu, Y Z, Jiang, Y Y, Gao, X H et al. Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society[J], 2014, 136(33): 11687-11697.
16. Savadogo, O, Lee, K, Oishi, K et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochemistry Communications[J], 2004, 6(2): 105-109.
17. Wang, X, Choi, S-I, Roling, L T et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nature Communications[J], 2015, 6: 7594.
18. Miner, E M, Fukushima, T, Sheberla, D et al. Electrochemical oxygen reduction catalysed by Ni-3(hexaiminotriphenylene)(2). Nature Communications[J], 2016, 7: 7.
19. Masa, J, Xia, W, Muhler, M et al. On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie-International Edition[J], 2015, 54(35): 10102-10120.
20. Tang, H J, Yin, H J, Wang, J Y et al. Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for High-Performance Oxygen Reduction Reaction. Angewandte Chemie-International Edition[J], 2013, 52(21): 5585-5589.
21. Chung, H T, Won, J H & Zelenay, P Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nature Communications[J], 2013, 4: 5.
22. Zhao, Y, Nakamura, R, Kamiya, K et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications[J], 2013, 4: 7.
23. Feng, J, Liang, Y, Wang, H et al. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research[J], 2012, 5(10): 718-725.
24. Zhao, A Q, Masa, J, Xia, W et al. Spinel Mn-Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society[J], 2014, 136(21): 7551-7554.
25. Gorlin, Y & Jaramillo, T F A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. Journal of the American Chemical Society[J], 2010, 132(39): 13612-13614.
26. Liang, Y, Li, Y, Wang, H et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials[J], 2011, 10(10): 780-786.
27. Gewirth, A A & Thorum, M S Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorganic Chemistry[J], 2010, 49(8): 3557-3566.
28. Sedona, F, Di Marino, M, Forrer, D et al. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nature Materials[J], 2012, 11(11): 970-977.
29. Subbaraman, R, Danilovic, N, Lopes, P P et al. Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes. Journal of Physical Chemistry C[J], 2012, 116(42): 22231-22237.
30. Li, D G, Wang, C, Strmcnik, D S et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy & Environmental Science[J], 2014, 7(12): 4061-4069.
31. Wan, L J, Moriyama, T, Ito, M et al. In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution. Chemical Communications[J], 2002(1): 58-59.
32. Todoroki, N, Iijima, Y, Takahashi, R et al. Structure and Electrochemical Stability of Pt-Enriched Ni/Pt(111) Topmost Surface Prepared by Molecular Beam Epitaxy. Journal of the Electrochemical Society[J], 2013, 160(6): F591-F596.
33. Yoshimoto, S, Tada, A & Itaya, K In situ scanning tunneling microscopy study of the effect of iron octaethylporphyrin adlayer on the electrocatalytic reduction of O-2 on Au(111). Journal of Physical Chemistry B[J], 2004, 108(17): 5171-5174.
34. Grumelli, D, Wurster, B, Stepanow, S et al. Bio-inspired nanocatalysts for the oxygen reduction reaction. Nature Communications[J], 2013, 4: 6.
35. Climent, V, Fu, Y C, Chumillas, S et al. Probing the Electrocatalytic Oxygen Reduction Reaction Reactivity of Immobilized Multicopper Oxidase CueO. Journal of Physical Chemistry C[J], 2014, 118(29): 15754-15765.
36. Sun, S R, Jiang, N & Xia, D G Density Functional Theory Study of the Oxygen Reduction Reaction on Metalloporphyrins and Metallophthalocyanines. Journal of Physical Chemistry C[J], 2011, 115(19): 9511-9517.
37. Sun, Y, Chen, K X, Jia, L et al. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study. Physical Chemistry Chemical Physics[J], 2011, 13(30): 13800-13808.
38. Hulsken, B, Van Hameren, R, Gerritsen, J W et al. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface. Nature Nanotechnology[J], 2007, 2(5): 285-289.
39. den Boer, D, Li, M, Habets, T et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chemistry[J], 2013, 5(7): 621-627.
40. Li, M, den Boer, D, Iavicoli, P et al. Tip-induced chemical manipulation of metal porphyrins at a liquid/solid interface. Journal of the American Chemical Society[J], 2014, 136(50): 17418-17421.
41. Nie, Y, Li, L & Wei, Z D Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews[J], 2015, 44(8): 2168-2201.
42. Ramaswamy, N, Tylus, U, Jia, Q Y et al. Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society[J], 2013, 135(41): 15443-15449.
43. Jia, Q, Ramaswamy, N, Hafiz, H et al. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. Acs Nano[J], 2015, 9(12): 12496-12505.
44. Strbac, S, Srejic, I, Smiljanic, M et al. The effect of rhodium nanoislands on the electrocatalytic activity of gold for oxygen reduction in perchloric acid solution. Journal of Electroanalytical Chemistry[J], 2013, 704: 24-31.
45. Sheng, Z H, Gao, H L, Bao, W J et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry[J], 2012, 22(2): 390-395. |