[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] Dunn B, Kamath H, Tarascon J M. Electrical Energy Storage for the Grid: A Battery of Choices[J]. Science, 2011, 334(6058): 928-935.
[3] Brandt K. Historical Development of Secondary Lithium Batteries[J]. Solid State Ionics, 1994, 69(3-4): 173-183.
[4] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2008, 47(16): 2930-2946.
[5] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta, 1999, 45(1-2): 31-50.
[6] Kasavajjula U, Wang C, Appleby A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2): 1003-1039.
[7] Li J, Dahn J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Journal of the Electrochemical Society, 2007, 154(3): A156-A161.
[8] Hatchard T D, Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of the Electrochemical Society, 2004, 151(6): A838-A842.
[9] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5): A93-A96.
[10] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2010, 195(15): 5062-5066.
[11] Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid State Letters, 2001, 4(9): A137-A140.
[12] Graetz J, Ahn C C, Yazami R, et al. Highly reversible lithium storage in nanostructured silicon[J]. Electrochemical and Solid State Letters, 2003, 6(9): A194-A197.
[13] Huang K L(黄可龙),Wang Z X(王兆翔),Liu S Q(刘素琴). 锂离子电池原理与关键技术[M]. Beijing: Chemical Industry Press (化学工业出版社), 2007: 232-240.
[14] Luo F, Chu G, Xia X X, et al. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J]. Nanoscale, 2015, 7(17): 7651-7658.
[15] Jaumann T, Balach J, Klose M, et al. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 24956-24967.
[16] Liu X H, Zhong L, Huang S, et al. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation[J]. Acs Nano, 2012, 6(2): 1522-1531.
[17] Ryu I, Choi J W, Cui Y, et al. Size-dependent fracture of Si nanowire battery anodes[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(9): 1717-1730.
[18] Li H, Huang X J, Chen L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(1-4): 181-191.
[19] Ng S H, Wang J, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2006, 45(41): 6896-6899.
[20] Yue L, Zhang W H, Yang J F, et al. Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 125: 206-217.
[21] Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2008, 47(9): 1645-1649.
[22] Chen S, Gordin M L, Yi R, et al. Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12741-12745.
[23] Liu N, Wu H, McDowell M T, et al. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes[J]. Nano Letters, 2012, 12(6): 3315-3321.
[24] Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192.
[25] Jia H P, Gao P F, Yang J, et al. Novel Three-Dimensional Mesoporous Silicon for High Power Lithium-Ion Battery Anode Material[J]. Advanced Energy Materials, 2011, 1(6): 1036-1039.
[26] Liu J, Kopold P, van Aken P A, et al. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries[J]. Angewandte Chemie-International Edition, 2015, 54(33): 9632-9636.
[27] Shao D, Tang D P, Yang J W, et al. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 297: 344-350.
[28] He Y S, Gao P F, Chen J, et al. A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries[J]. Rsc Advances, 2011, 1(6): 958-960.
[29] Wu J X, Qin X Y, Zhang H R, et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode[J]. Carbon, 2015, 84: 434-443.
[30] Li H, Lu C, Zhang B. A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance[J]. Electrochimica Acta, 2014, 120: 96-101.
[31] Chen D Q, Liao W J, Yang Y, et al. Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode[J]. Journal of Power Sources, 2016, 315: 236-241.
[32] Li Q L, Chen D Q, Li K, et al. Electrostatic self-assembly bmSi@C/rGO composite as anode material for lithium ion battery[J]. Electrochimica Acta, 2016, 202: 140-146.
[33] Feng X J, Yang J, Bie Y T, et al. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries[J]. Nanoscale, 2014, 6(21): 12532-12539.
[34] Chen Z H, Christensen L, Dahn J R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers[J]. Electrochemistry Communications, 2003, 5(11): 919-923.
[35] Zheng H H, Yang R Z, Liu G, et al. Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode[J]. Journal of Physical Chemistry C, 2012, 116(7): 4875-4882.
[36] Lux S F, Schappacher F, Balducci A, et al. Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries[J]. Journal of the Electrochemical Society, 2010, 157(3): A320-A325.
[37] Liu W R, Yang M H, Wu H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid State Letters, 2005, 8(2): A100-A103.
[38] Lee J H, Paik U, Hackley V A, et al. Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(1): 612-616.
[39] Magasinski A, Zdyrko B, Kovalenko I, et al. Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid[J]. Acs Applied Materials & Interfaces, 2010, 2(11): 3004-3010.
[40] Chong J, Xun S D, Zheng H H, et al. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells[J]. Journal of Power Sources, 2011, 196(18): 7707-7714.
[41] Komaba S, Ozeki T, Okushi K. Functional interface of polymer modified graphite anode[J]. Journal of Power Sources, 2009, 189(1): 197-203.
[42] Komaba S, Ozeki T, Yabuuchi N, et al. Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries[J]. Electrochemistry, 2011, 79(1): 6-9.
[43] Komaba S, Yabuuchi N, Ozeki T, et al. Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries[J]. Journal of Physical Chemistry C, 2012, 116(1): 1380-1389.
[44] Kovalenko I, Zdyrko B, Magasinski A, et al. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries[J]. Science, 2011, 334(6052): 75-79.
[45] Liu J, Zhang Q, Zhang T, et al. A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries[J]. Advanced Functional Materials, 2015, 25(23): 3599-3605.
[46] Maranchi J P, Hepp A F, Evans A G, et al. Interfacial properties of the a-Si/Cu : active-inactive thin-film anode system for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(6): A1246-A1253.
[47] Li H X, Cheng F Y, Zhu Z Q, et al. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries[J]. Journal of Alloys and Compounds, 2011, 509(6): 2919-2923.
[48] Wang W, Kumta P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes[J]. Acs Nano, 2010, 4(4): 2233-2241.
[49] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
[50] Yang Y, Chen D Q, Liu B, et al. Binder-Free Si Nanoparticle Electrode with 3D Porous Structure Prepared by Electrophoretic Deposition for Lithium-Ion Batteries[J]. Acs Applied Materials & Interfaces, 2015, 7(14): 7497-7504.
[51] Yang Y, Li J Q, Chen D Q, et al. Binder-Free Carbon-Coated Silicon-Reduced Graphene Oxide Nanocomposite Electrode Prepared by Electrophoretic Deposition as a High-Performance Anode for Lithium-Ion Batteries[J]. Chemelectrochem, 2016, 3(5): 757-763.
[52] Roy A K, Zhong M J, Schwab M G, et al. Preparation of a Binder-Free Three-Dimensional Carbon Foam/Silicon Composite as Potential Material for Lithium Ion Battery Anodes[J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7343-7348.
[53] Lee J T, Lin Y W, Jan Y S. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2004, 132(1-2): 244-248.
[54] Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416.
[55] Ding N, Xu J, Yao Y X, et al. Improvement of cyclability of Si as anode for Li-ion batteries[J]. Journal of Power Sources, 2009, 192(2): 644-651.
[56] Nakai H, Kubota T, Kita A, et al. Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes[J]. Journal of the Electrochemical Society, 2011, 158(7): A798-A801.
[57] Etacheri V, Haik O, Goffer Y, et al. Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes[J]. Langmuir, 2012, 28(1): 965-976.
[58] Chen L B, Wang K, Xie X H, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries[J]. Journal of Power Sources, 2007, 174(2): 538-543.
[59] Choi N S, Yew K H, Lee K Y, et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources, 2006, 161(2): 1254-1259. |