[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[3] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced materials, 1998, 10(10): 725-763.
[4] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries[J]. Journal of Power Sources, 1997, 68(1): 87-90.
[5] Boukamp B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4): 725-729.
[6] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials, 2005, 4(5): 366-377.
[7] Szczech J R, Jin S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011, 4(1): 56-72.
[8] Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
[9] Wu H, Zheng G, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano letters, 2012, 12(2): 904-909.
[10] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature nanotechnology, 2012, 7(5): 310-315.
[11] Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano letters, 2011, 11(7): 2949-2954.
[12] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nanotechnology, 2008, 3(1): 31-35.
[13] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531.
[14] Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes[J]. Chemical Communications, 2010, 46(12): 2025-2027.
[15] Jia H, Gao P, Yang J, et al. Novel Three‐Dimensional Mesoporous Silicon for High Power Lithium‐Ion Battery Anode Material[J]. Advanced Energy Materials, 2011, 1(6): 1036-1039.
[16] Jung H, Park M, Yoon Y G, et al. Amorphous silicon anode for lithium-ion rechargeable batteries[J]. Journal of power sources, 2003, 115(2): 346-351.
[17] Luo X, Zhang H, Pan W, et al. SiOx nanodandelion by laser ablation for anode of lithium-ion battery[J]. Small, 2015, 11(45): 6009-6012.
[18] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279(5348): 208-211.
[19] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673.
[20] Zhao C, Luo X, Chen C, et al. Sandwich electrode designed for high performance lithium-ion battery[J]. Nanoscale, 2016, 8(18): 9511-9516.
[21] Berman D, Erdemir A, Sumant A V. Graphene: a new emerging lubricant[J]. Materials Today, 2014, 17(1): 31-42.
[22] Wu H, Yu G, Pan L, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature communications, 2013, 4.
[23] Wang C, Wu H, Chen Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature chemistry, 2013, 5(12): 1042-1048.
[24] Yoo M, Frank C W, Mori S. Interaction of poly (vinylidene fluoride) with graphite particles. 1. Surface morphology of a composite film and its relation to processing parameters[J]. Chemistry of materials, 2003, 15(4): 850-861.
[25] Yoo M, Frank C W, Mori S, et al. Interaction of poly (vinylidene fluoride) with graphite particles. 2. Effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance[J]. Chemistry of materials, 2004, 16(10): 1945-1953.
[26] Mazouzi D, Lestriez B, Roue L, et al. Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215-A218.
[27] Magasinski A, Zdyrko B, Kovalenko I, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS applied materials & interfaces, 2010, 2(11): 3004-3010.
[28] Bridel J S, Azais T, Morcrette M, et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chemistry of materials, 2009, 22(3): 1229-1241.
[29] Chen Z, Christensen L, Dahn J R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers[J]. Electrochemistry communications, 2003, 5(11): 919-923.
[30] Liu W R, Yang M H, Wu H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters, 2005, 8(2): A100-A103.
[31] Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79.
[32] Koo B, Kim H, Cho Y, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(35): 8762-8767.
[33] Ryou M H, Kim J, Lee I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced materials, 2013, 25(11): 1571-1576.
[34] Cui L F, Hu L, Wu H, et al. Inorganic glue enabling high performance of silicon particles as lithium ion battery anode[J]. Journal of The Electrochemical Society, 2011, 158(5): A592-A596.
[35] Park S J, Zhao H, Ai G, et al. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2565-2571.
[36] Nguyen C C, Yoon T, Seo D M, et al. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on SEI formation[J]. ACS applied materials & interfaces, 2016, 8(19): 12211–12220.
[37] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[38] Cho J H, Picraux S T. Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation[J]. Nano letters, 2014, 14(6): 3088-3095.
[39] Wang X, Wu X L, Guo Y G, et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[J]. Advanced Functional Materials, 2010, 20(10): 1680-1686.
[40] Xu S, Hessel C M, Ren H, et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energy & Environmental Science, 2014, 7(2): 632-637.
[41] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery[J]. The Journal of Physical Chemistry B, 2008, 112(47): 14836-14842.
[42] Fan Y, Zhang Q, Xiao Q, et al. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology[J]. Carbon, 2013, 59: 264-269.
[43] Yang J, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
[44] Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature nanotechnology, 2014, 9(3): 187-192.
[45] Zhu B, Liu N, McDowell M, et al. Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery[J]. Nano Energy, 2015, 13: 620-625.
[46] Zheng G, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature nanotechnology, 2014, 9(8): 618-623.
[47] Yan K, Lee H W, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode[J]. Nano letters, 2014, 14(10): 6016-6022.
[48] Li J, Dudney N J, Nanda J, et al. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes[J]. ACS applied materials & interfaces, 2014, 6(13): 10083-10088.
[49] Wang H Y, Wang F M. Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode[J]. Journal of Power Sources, 2013, 233: 1-5.
[50] Xiao X, Lu P, Ahn D. Ultrathin multifunctional oxide coatings for lithium ion batteries[J]. Advanced Materials, 2011, 23(34): 3911-3915.
[51] Martin L, Martinez H, Ulldemolins M, et al. Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive[J]. Solid State Ionics, 2012, 215: 36-44.
[52] Profatilova I A, Stock C, Schmitz A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222: 140-149.
[53] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[54] Zhou M, Li X, Wang B, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies[J]. Nano letters, 2015, 15(9): 6222-6228.
[55] Yang J, Takeda Y, Imanishi N, et al. SiOx-based anodes for secondary lithium batteries[J]. Solid State Ionics, 2002, 152: 125-129.
[56] Guo B, Shu J, Wang Z, et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2008, 10(12): 1876-1878.
[57] Miyachi M, Yamamoto H, Kawai H, et al. Analysis of SiO anodes for lithium-ion batteries[J]. Journal of the electrochemical society, 2005, 152(10): A2089-A2091.
[58] Li X, Dhanabalan A, Meng X, et al. Nanoporous tree-like SiO2 films fabricated by sol-gel assisted electrostatic spray deposition[J]. Microporous and Mesoporous Materials, 2012, 151: 488-494.
[59] Yao Y, Zhang J, Xue L, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(23): 10240-10243.
[60] Yan N, Wang F, Zhong H, et al. Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries[J]. Scientific reports, 2013, 3: 1568.
Favors Z, Wang W, Bay H H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific reports, 2014, 4: 4605. |