电化学(中英文) ›› 2016, Vol. 22 ›› Issue (1): 1-19. doi: 10.13208/j.electrochem.150847
• 邀请论文 • 下一篇
赵 波1,2,姜 莉1,袁铭辉3,符显珠1*,孙 蓉1*,汪正平4
收稿日期:
2015-11-07
修回日期:
2015-12-07
出版日期:
2016-02-29
发布日期:
2016-02-29
通讯作者:
符显珠,孙 蓉
E-mail:xz.fu@siat.ac.cn, rong.sun@siat.ac.cn
基金资助:
国家自然科学基金项目(No. 21203236)、广东省引进创新科研团队计划项目(No. 2011D052,No. KYPT20121228160843692)、深圳市高密度电子封装材料与器件重点实验室项目(No. ZDSYS20140509174237196)及深圳市孔雀计划项目(No. KQCX2015033117354154)资助
ZHAO Bo1,2, JIANG Li1, YUEN Ming-hui3, FU Xian-zhu1*, SUN Rong1*, WONG Ching-Ping4
Received:
2015-11-07
Revised:
2015-12-07
Published:
2016-02-29
Online:
2016-02-29
Contact:
FU Xian-zhu, SUN Rong
E-mail:xz.fu@siat.ac.cn, rong.sun@siat.ac.cn
摘要:
石墨烯是一种具有优异物理和化学性质的新型二维碳纳米材料,大规模低成本制备高品质石墨烯的方法是其能够得到广泛实际应用的重要前提. 电化学方法可以快捷、绿色无污染、批量制备高质量的石墨烯及其复合材料. 本综述在对石墨烯各种制备方法进行简要比较之后,对近年来石墨烯、石墨烯/无机纳米复合材料、石墨烯/聚合物复合材料以及类石墨烯材料的电化学法制备进展进行介绍并作了展望.
中图分类号:
赵 波, 姜 莉, 袁铭辉, 符显珠, 孙 蓉, 汪正平. 电化学法制备石墨烯及其复合材料[J]. 电化学(中英文), 2016, 22(1): 1-19.
ZHAO Bo, JIANG Li, YUEN Ming-hui, FU Xian-zhu, SUN Rong, WONG Ching-Ping. Electrochemical Syntheses of Graphene and Its Composites[J]. Journal of Electrochemistry, 2016, 22(1): 1-19.
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] Georgakilas V, Perman J A, Tucek J, et al. broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures[J]. Chemical Reviews, 2015, 115(11): 4744-4822. [3] Geng D, Wang H, Yu G. Graphene single crystals: Size and morphology engineering[J]. Advanced Materials, 2015, 27(18): 2821-2837. [4] Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics[J]. Advanced Materials, 2009, 21(25/26): 2586-2600. [5] Roy-Mayhew J D, Aksay I A. Graphene materials and their use in dye-sensitized solar cells[J]. Chemical Reviews, 2014, 114(12): 6323-6348. [6] Li W W, Geng X M, Guo Y F, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection[J]. ACS Nano, 2011, 5(9): 6955-6961. [7] Xu Y T, Guo Y, Li C, et al. Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries[J]. Nano Energy, 2015, 11: 38-47. [8] Xu Y T, Guo Y, Song L X, et al. Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials[J]. Electrochimica Acta, 2015, 176: 434-441. [9] Ma Y, Chang H, Zhang M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27(36): 5296-5308. [10] Zhao B, Huang S Y, Wang T, et al. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries[J]. Journal of Power Sources, 2015, 298: 83-91. [11] Huang S Y, Zhao B, Zhang K, et al. Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity[J]. Scientific Reports, 2015, 5: 14260. [12] Li C, Xu Y T, Zhao B, et al. Flexible graphene electrothermal films made from electrochemically exfoliated graphite[J]. Journal of Materials Science, 2016, 51(2): 1043-1051. [13] Janas D, Koziol K K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications[J]. Nanoscale, 2014, 6(6): 3037-3045. [14] Ye D, Moussa S, Ferguson J D, et al. Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays[J]. Nano letters, 2012, 12(3): 1265-1268. [15] Xiong B, Zhou Y, Zhao Y, et al. The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation[J]. Carbon, 2013, 52: 181-192. [16] Van Noorden R. Moving towards a graphene world[J]. Nature, 2006, 442(7100): 228-229. [17] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. [18] Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nature Nanotechnology, 2009, 4(1): 30-33. [19] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. [20] Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices[J]. Chemical Communications, 2012, 48(9): 1239-1241. [21] Abdelkader A M, Cooper A J, Dryfe R A W, et al. How to get between the sheets: A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite[J]. Nanoscale, 2015, 7(16): 6944-6956. [22] Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014, 136(16): 6083-6091. [23] Ambrosi A, Chua C K, Bonanni A, et al. Electrochemistry of graphene and related materials[J]. Chemical Reviews, 2014, 114(14): 7150-7188. [24] Pang S, Englert J M, Tsao H N, et al. Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene[J]. Advanced Materials, 2010, 22(47): 5374-5277. [25] Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. [26] Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624-630. [27] Ciesielski A, Haar S, El Gemayel M, et al. Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds: A supramolecular approach[J]. Angewandte Chemie-International Edition, 2014, 53(39): 10355-10361. [28] Chua CK, Pumera M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint[J]. Chemical Society Reviews, 2014, 43(1): 291-312. [29] Thakur S, Karak N. Alternative methods and nature-based reagents for the reduction of graphene oxide: A review[J]. Carbon, 2015, 94: 224-242. [30] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240): 877-880. [31] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-U5. [32] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428. [33] Bointon T H, Barnes M D, Russo S, et al. High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition[J]. Advanced Materials, 2015, 27(28): 4200-4206. [34] Lewis A M, Derby B, Kinloch I A. Influence of gas phase equilibria on the chemical vapor deposition of graphene[J]. ACS Nano, 2013, 7(4): 3104-3117. [35] Jiang L, Niu T C, Lu X Q, et al. Low-temperature, bottom-up synthesis of graphene via a radical-coupling reaction[J]. Journal of the American Chemical Society, 2013, 135(24): 9050-9054. [36] Liu N, Luo F, Wu H X, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525. [37] Hathcock K W, Brumfield J C, Goss C A, et al. Incipient electrochemical oxidation of highly oriented pyrolytic graphite: Correlation between surface blistering and electrolyte anion intercalation[J]. Analytical Chemistry, 1995, 67(13): 2201-2206. [38] Zhang J D, Wang E K. STM investigation of HOPG superperiodic features caused by electrochemical pretreatment[J]. Journal of Electroanalytical Chemistry, 1995, 399(1/2): 83-89. [39] Choo H S, Kinumoto T, Jeong S K, et al. Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution[J]. Journal of The Electrochemical Society, 2007, 154(10): B1017-B1023. [40] Kakaei K. One-pot electrochemical synthesis of graphene by the exfoliation of graphite powder in sodium dodecyl sulfate and its decoration with platinum nanoparticles for methanol oxidation[J]. Carbon, 2013, 51: 195-201. [41] Cooper A J, Wilson N R, Kinloch I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66: 340-350. [42] Wu L Q, Li W W, Li P, et al. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite[J]. Small, 2014, 10(7): 1421-1429. [43] Morales G M, Schifani P, Ellis G, et al. High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite[J]. Carbon, 2011, 49(8): 2809-2816. [44] Winchester A J, Ghosh S, Feng S, et al. Electrochemical characterization of liquid-phase exfoliated 2D layers of molybdenum disulfide[J]. ACS Appllied Materials & Interfaces, 2014, 6(3): 2125-2130. [45] Bonanni A, Pumera M. Surfactants used for dispersion of graphenes exhibit strong influence on electrochemical impedance spectroscopic response[J]. Electrochemistry Communications, 2012, 16(1): 19-21. [46] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. [47] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature nanotechnology, 2013, 8(4): 235-246. [48] Zhou M, Tang J, Cheng Q, et al. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J]. Chemical Physics Letters, 2013, 572: 61-65. [49] Abdelkader A M, Kinloch I A, Dryfe RAW. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents[J]. ACS Appllied Materials & Interfaces. 2014, 6(3): 1632-1639. [50] Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical review letters, 2006, 97(18): 187401. [51] Huang H, Xia Y, Tao X Y, et al. Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism[J]. Journal of Materials Chemistry, 2012, 22(21): 10452-10456. [52] Van Thanh D, Li L J, Chu C W, et al. Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets[J]. RSC Advances, 2014, 4(14): 6946-6949. [53] Zhou M, Wang Y L, Zhai Y M, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films[J]. Chemistry-A European Journal, 2009, 15(25): 6116-6120. [54] Guo Y L, Wu B, Liu H T, et al. Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors[J]. Advanced Materials, 2011, 23(40): 4626-4630. [55] Kauppila J, Kunnas P, Damlin P, et al. Electrochemical reduction of graphene oxide films in aqueous and organic solutions[J]. Electrochimica Acta, 2013, 89: 84-89. [56] Lindfors T, Österholm A, Kauppila J, et al. Electrochemical reduction of graphene oxide in electrically conducting poly(3, 4-ethylenedioxythiophene) composite films[J]. Electrochimica Acta, 2013, 110: 428-436. [57] Tong H, Zhu J, Chen J, et al. Electrochemical reduction of graphene oxide and its electrochemical capacitive performance[J]. Journal of Solid State Electrochemistry, 2013, 17(11): 2857-2863. [58] Zhang X, Zhang D C, Chen Y, et al. Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties[J]. Chinese Science Bulletin, 2012, 57(23): 3045-3050. [59] Guo Y, Zhang L, Zhao B, et al. A novel solid-to-solid electrocatalysis of graphene oxide reduction on copper electrode[J]. RSC Advances, 2015, 5(107): 87987-87992. [60] Liu A R, Li C, Bai H, et al. Electrochemical deposition of polypyrrole/sulfonated graphene composite films[J]. The Journal of Physical Chemistry C, 2010, 114(51): 22783-22789. [61] Shao Y Y, Wang J, Engelhard M, et al. Facile and controllable electrochemical reduction of graphene oxide and its applications[J]. Journal of Materials Chemistry, 2010, 20(4): 743-748. [62] Chen L Y, Tang Y H, Wang K, et al. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application[J]. Electrochemistry Communications, 2011, 13(2): 133-137. [63] Liu C B, Wang K, Luo S L, et al. Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films[J]. Small, 2011, 7(9): 1203-1206. [64] Li C, Shi G. Three-dimensional graphene architectures[J]. Nanoscale, 2012, 4(18): 5549-5563. [65] Chen K W, Chen L B, Chen Y Q, et al. Three-dimensional porous graphene-based composite materials: Electrochemical synthesis and application[J]. Journal of Materials Chemistry, 2012, 22(39): 20968-20976. [66] Liu C G, Yu Z N, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano letters, 2010, 10(12): 4863-4868. [67] Hu J, Kang Z, Li F, et al. Graphene with three-dimensional architecture for high performance supercapacitor[J]. Carbon, 2014, 67: 221-229. [68] Patil U, Sohn J, Kulkarni S, et al. Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes[J]. ACS Appllied Materials & Interfaces, 2014, 6(4): 2450-2458. [69] Yan T, Li R Y, Li Z J. Nickel-cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials[J]. Materials Research Bulletin, 2014, 51: 97-104. [70] Wu C H, Deng S X, Wang H, et al. Preparation of novel three dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications[J]. ACS Appllied Materials & Interfaces, 2014, 6(2): 1106-1112. [71] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-876. [72] Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240): 877-880. [73] Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. Journal of the American Chemical Society, 2011, 133(12): 4168-4171. [74] Xie L M, Wang H L, Jin C H, et al. Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties[J]. Journal of the American Chemical Society, 2011, 133(27): 10394-10397. [75] Huang X, Yin Z Y, Wu S X, et al. Graphene-based materials: Synthesis, characterization, properties, and applications[J]. Small, 2011, 7(14): 1876-1902. [76] Xiong Z G, Zhang L L, Ma J Z. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation[J]. Chemical Communications, 2010, 46(33): 6099-6101. [77] Xia B Y, Wang B, Wu H B, et al. Sandwich-structured TiO2-Pt-graphene ternary hybrid electrocatalysts with high efficiency and stability[J]. Journal of Materials Chemistry, 2012, 22(32): 16499-16505. [78] Zhang Z, Xu F G, Yang W S, et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J]. Chemical Communications, 2011, 47(22): 6440-6442. [79] Kim W, Lee T, Han S. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon, 2014, 69: 55-65. [80] Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2): 316-324. [81] Liu J, Fu S, Yuan B, et al. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide[J]. Journal of the American Chemical Society, 2010, 132(21): 7279-7281. [82] Zhao Y, Zhan L, Tian J, et al. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium[J]. Electrochimica Acta, 2011, 56(5): 1967-1972. [83] Elzatahry A A, Abdullah A M, El-Din TAS, et al. Nanocomposite graphene-based material for fuel cell applications[J]. International Journal of Electrochemical Science, 2012, 7(4): 3115-3126. [84] Marquardt D, Vollmer C, Thomann R, et al. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids[J]. Carbon, 2011, 49(4): 1326-1332. [85] Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry, 2010, 20(14): 2801-2806. [86] Liu J C, Bai H W, Wang Y J, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications[J]. Advanced Functional Materials, 2010, 20(23): 4175-4181. [87] Yin Z Y, Wu S X, Zhou X Z, et al. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells[J]. Small, 2010, 6(2): 307-312. [88] Feng X M, Chen N N, Zhang Y, et al. The self-assembly of shape controlled functionalized Graphene/MnO2 composites for supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(24): 9178-9184. [89] Yan J, Fan Z J, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833. [90] Gao Z Y, Liu J L, Xu F, et al. One-pot synthesis of graphene-cuprous oxide composite with enhanced photocatalytic activity[J]. Solid State Sciences, 2012, 14(2): 276-280. [91] Wu S X, Yin Z Y, He Q Y, et al. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes[J]. The Journal of Physical Chemistry C, 2010, 114(27): 11816-11821. [92] Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(18): 5306-5313. [93] Liang Y Y, Li Y G, Wang H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786. [94] Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213. [95] Wang X, Cao X Q, Bourgeois L, et al. N-Doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2012, 22(13): 2682-2690. [96] Huang Y, Wu D, Wang J, et al. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage[J]. Small, 2014, 10(11): 2226-2232. [97] Zhu X J, Hu J, Dai H L, et al. Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery[J]. Electrochimica Acta, 2012, 64: 23-28. [98] Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites[J]. The Journal of Physical Chemistry C, 2008, 112(50): 19841-19845. [99] Maiyalagan T, Dong X C, Chen P, et al. Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application[J]. Journal of Materials Chemistry, 2012, 22(12): 5286-5290. [100] Fu X W, Liao Z M, Zhou Y B, et al. Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector[J]. Applied Physics Letters, 2012, 100(22): 223114. [101] Gao Z W, Jin W F, Zhou Y, et al. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions[J]. Nanoscale, 2013, 5(12): 5576-5581. [102] Kim Y T, Han J H, Hong B H, et al. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates[J]. Advanced Materials, 2010, 22(4): 515-518. [103] Peng L L, Peng X, Liu B R, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Letters, 2013, 13(5): 2151-2157. [104] Sun Y Q, Shi G Q. Graphene/polymer composites for energy applications[J]. Journal of Polymer Science Part B-Polymer Physics, 2013, 51(4): 231-253. [105] Zhang L, Wu J T, Jiang L. Graphene and its polymer nanocomposites[J]. Progress in Chemistry, 2014, 26(4): 560-571. [106] Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11): 1350-1375. [107] Yan X B, Chen J T, Yang J, et al. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers[J]. ACS Appllied Materials & Interfaces, 2010, 2(9): 2521-2529. [108] Feng X M, Li R M, Ma Y W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Advanced Functional Materials, 2011, 21(15): 2989-2996. [109] Wang D W, Li F, Zhao J P, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745-1752. [110] Tang Y H, Wu N, Luo S L, et al. One-step electrodeposition to layer-by-layer graphene-conducting-polymer hybrid films[J]. Macromolecular Rapid Communications, 2012, 33(20): 1780-1786. [111] Sangermano M, Chiolerio A, Veronese G P, et al. Graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and UV-induced bonding[J]. Macromolecular Rapid Communications, 2014, 35(3): 355-359. [112] Huang L, Li C, Shi G Q. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films[J]. Journal of Materials Chemistry A, 2014, 2(4): 968-974. [113] Xu M S, Liang T, Shi M M, etc. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. [114] Matte HSSR, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie-International Edition, 2010, 49(24): 4059-4062. [115] Joensen P, Frindt R F, Morrison S R. Single-layer MoS2[J]. Materials Research Bulletin, 1986, 21(4): 457-461. [116] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication[J]. Angewandte Chemie International Edition, 2011, 50(47): 11093-11097. [117] Wang H, Sofer Z, Moo JGS, etc. Simultaneous self-exfoliation and autonomous motion of MoS2 particles in water[J]. Chemical Communications, 2015, 51(48): 9899-9902. [118] Loo A H, Bonanni A, Sofer Z, etc. Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation[J]. Electrochemistry Communications, 2015, 50: 39-42. [119] Liu N, Kim P, Kim J H, etc. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation[J]. ACS Nano, 2014, 8(7): 6902-6910. |
[1] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[2] | 张芯婉, 孟广源, 方立强, 常定明, 李童, 胡锦文, 陈鹏, 刘勇弟, 张乐华. 基于BP神经网络的电化学还原硝酸盐过程智能控制[J]. 电化学(中英文), 2023, 29(12): 211215-. |
[3] | 毛麟, 钮东方, 胡硕真, 张新胜. 电化学合成乙酰基吡嗪[J]. 电化学(中英文), 2022, 28(5): 2107061-. |
[4] | 应方, 许珊珊, 许燕冰, 梁苗苗, 李剑锋. Fe3O4磁性纳米颗粒催化电化学降解土霉素的研究[J]. 电化学(中英文), 2022, 28(4): 2107141-. |
[5] | 刘佩璇, 彭芦苇, 何瑞楠, 李露露, 乔锦丽. 一种用于电还原CO2生成甲酸的高性能连续流动式MEA反应器[J]. 电化学(中英文), 2022, 28(1): 2104231-. |
[6] | 郭浩, 钮东方, 胡硕真, 张新胜. 对-(β-羟乙基砜)苯胺的电化学合成[J]. 电化学(中英文), 2021, 27(5): 498-507. |
[7] | 刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404. |
[8] | 张运丰, 董佳明, 谭畅, 霍士康, 王佳颖, 何阳, 王雅莹. Li-SGO掺杂半互穿网络型多孔单离子传导聚合物复合电解质的制备[J]. 电化学(中英文), 2021, 27(1): 108-117. |
[9] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[10] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[11] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[12] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
[13] | 张钰宁, 钮东方, 胡硕真, 张新胜. 基于纳米金属的增强效应在CO2电还原反应中的应用进展[J]. 电化学(中英文), 2020, 26(4): 495-509. |
[14] | 王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358. |
[15] | 韩平, 冯海涛, 董亚萍, 田森, 张波, 李武. 氢氧化钠水溶液体系中金属铬的电化学氧化过程[J]. 电化学(中英文), 2020, 26(3): 413-421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||