[1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. [2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. [3] Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2): 183-197. [4] Moshtev R, Johnson B. State of the art of commercial Li ion batteries[J]. Journal of Power Sources, 2000, 91(2): 86-91. [5] Travas-Sejdic J, Steiner R, Desilvestro J, et al. Ion conductivity of novel polyelectrolyte gels for secondary lithium-ion polymer batteries[J]. Electrochimica Acta, 2001, 46(10): 1461-1466. [6] Ohsaki T, Kishi T, Kuboki T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100. [7] Zhang Z, Fouchard D, Rea JR. Differential scanning calorimetry material studies implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20. [8] Yamaki J I, Baba Y, Katayama N, et al. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode[J]. Journal of Power Sources, 2003, 119(SI): 789-793. [9] Baba Y, Okada S, Yamaki J. Thermal stability of LixCoO2 cathode for lithium ion battery[J]. Solid State Ionics, 2002, 148(3/4): 311-316. [10] Tobishima S I, Takei K, Sakurai Y, et al. Lithium ion cells safety[J]. Journal of Power Sources, 2000, 90(2): 188-195. [11] Ji W X, Jiang B L, Ai F X, et al. Temperature-responsive microsphere coated separator for thermal shutdown protection of lithium ion batteries[J]. RSC Advances, 2015, 5(1): 172-176. |