[1] Wenju L, Geng C, Jiayue P, et al. Fundamental scientific aspects of lithium batteries (XII)—Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667.[2] Thurston T R, Jisrawi N M, Mukerjee S, et al. Synchrotron X-ray diffraction studies of the structural properties of electrode materials in operating battery cells[J]. Applied Physics Letters, 1996, 69(2): 194-196.[3] Liu L, Chen L, Huang X, et al. Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material[J]. Journal of The Electrochemical Society, 2004, 151(9): A1344-A1351.[4] Nam K W, Wang X J, Yoon W S, et al. In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge[J]. Electrochemistry Communications, 2009, 11(4): 913-916.[5] Wang X J, Chen H Y, Yu X, et al. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chemical Communications, 2011, 47(25): 7170-7172.[6] Wang L, Li H, Huang X, et al. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”[J]. Solid State Ionics, 2011, 193(1): 32-38.[7] Sun Y, Zhao L, Pan H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communication, 2013, 4: 1870.[8] Wang Y, Yu X, Xu S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communication, 2013, 4: 2365.[9] Wu N, Lyu Y-C, Xiao R-J, et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries[J]. NPG Asia Materials, 2014, 6(8): e120.[10] Gibot P, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4[J]. Nature Material, 2008, 7(9): 741-747.[11] Yu X, Wang Q, Zhou Y, et al. High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy[J]. Chemical Communication, 2012, 48(94): 11537-11539.[12] Yu X, Lyu Y, Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5): 1300950[13] Liu X, Liu J, Qiao R, et al. Phase transformation and lithiation effect on electronic structure of LixFePO4: An in-depth study by soft X-ray and simulations[J]. Journal of the American Chemical Socioety, 2012, 134(33): 13708-13715.[14] He Y, Yu X, Wang Y, et al. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Material, 2011, 23(42): 4938-4941.[15] Wang Y H, He Y, Xiao R J, et al. Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries[J]. Journal of Power Sources, 2012, 202: 236-245.[16] Li W, Zheng H, Chu G, et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: A top view investigation[J]. Faraday Discussion, 2014, published online.[17] Zheng H, Xiao D, Li X, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14(8): 4245-4249.[18] Xiao D D(肖东东), Gu L(谷林). Atomic-scale structure of nearly-equilibrated electrode materials under lithiation/delithiation for lithium-ion batteries[J]. Scientia Sinica Chimica(中国科学 化学), 2014, 44(3): 295-308.[19] Lu X, Jian Z, Fang Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7[J]. Energy & Environmental Science, 2011, 4(8): 2638-2644.[20] Lu X, Zhao L, He X, et al. Lithium storage in Li4Ti5O12 spinel: The full static picture from electron microscopy[J]. Advance Material, 2012, 24(24): 3233-3238.[21] Tang D, Liu D, Liu Y, et al. Investigation on the electrochemical activation process of Li1.20Ni0.32Co0.004Mn0.476O2[J]. Progress in Natural Science-Materials International, 2014, 24(4): 388-396.[22] Zhao L, Pan H L, Hu Y S, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chinese Physics B, 2012, 21(2): 028201.[23] Gu L, Zhu C, Li H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution[J]. Journal of the American Chemical Socioety, 2011, 133(13): 4661-4663.[24] Suo L, Han W, Lu X, et al. Highly ordered staging structural interface between LiFePO4 and FePO4[J]. Physical Chemistry Chemical Physics, 2012, 14(16): 5363-5367.[25] Zhu C, Gu L, Suo L, et al. Size-dependent staging and phase transition in LiFePO4/FePO4[J]. Advanced Functional Materials, 2014, 24(3): 312-318.[26] Lu X, Sun Y, Jian Z, et al. New insight into the atomic structure of electrochemically delithiated O3-Li1-xCoO2 (0 ≤ x ≤ 0.5) nanoparticles[J]. Nano Letters, 2012, 12(12): 6192-6197.[27] Wang R, He X, He L, et al. Atomic structure of Li2MnO3 after partial delithiation and re-lithiation[J]. Advanced Energy Materials, 2013, 3(10): 1358-1367.[28] Lyu Y, Ben L, Sun Y, et al. Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions[J]. Journal of Power Sources, 2015, 273: 1218-1225.[29] Xu W, Vegunta S S S, Flake J C. Surface-modified silicon nanowire anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(20): 8583-8589.[30] Zhang J, Wang R, Yang X, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012, 12(4): 2153-2157.[31] Zheng J, Zheng H, Wang R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(26): 13229-13238.[32] Zeng Y, Li L, Li H, et al. TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries[J]. Ionics, 2008, 15(1): 91-96.[33] Li H, Mo Y J, Pei N, et al. Surface-enhanced Raman scattering study on passivating films of Ag electrodes in lithium batteries[J]. Journal of Physical Chemistry B, 2000, 104(35): 8477-8480.[34] Li G F, Li H, Mo Y J, et al. Surface enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on silver electrode in lithium batteries[J]. Chemical Physics Letters, 2000, 330(3/4): 249-254.[35] Sharma N, Guo X, Du G, et al. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4[J]. Journal of the American Chemical Socioety, 2012, 134(18): 7867-7873. |