[1] Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.[2] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.[3] Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81(14): 5603-5613.[4] Lee H, Ihm J, Cohen M L, et al. Calcium-decorated graphene-based nanostructures for hydrogen storage[J]. Nano Letters, 2010, 10(3): 793-798.[5] Gilje S, Han S, Wang M S, et al. A chemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11): 3394-3398.[6] Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.[7] Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. Journal of the American Chemical Society, 2011, 133(12): 4168-4171.[8] Zeng Q, Cheng J S, Tang L H, et al. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing[J]. Advanced Functional Materials, 2010, 20(19): 3366-3372.[9] Zhang Q, Qiao Y, Hao F, et al. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis[J]. Chemistry-A European Journal, 2010, 16(27): 8133-8139.[10] Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosensors and Bioelectronics, 2009, 25(4): 901-905.[11] Wang M, Xiao F N, Wang K, et al. Electric field driven protonation/deprotonation of 3,4,9,10-perylene tetracarboxylic acid immobilized on graphene sheets via π-π stacking[J]. Journal of Electroanalytical Chemistry, 2012, in press: doi: http://dx.doi.org/10.1016/j.jelechem.2012.07.036. [12] Wang Y, Shao Y Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010, 4(4): 1790-1798.[13] Chen D, Tang L, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Review, 2010, 39(8): 3157-3180.[14] Wang Y, Li Z H, Wang J, et al. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology[J]. Trends in Biotechnology, 2011, 29(5): 205-212.[15] Zhang Q, Wu S, Zhang L, et al. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry[J]. Biosensors and Bioelectronics, 2011, 26(5): 2632-2637.[16] Chen S H, Duhamel J, Bahun G J, et al. Quantifying the presence of unwanted fluorescent species in the study of pyrene-labeled macromolecules[J]. Journal of Physical Chemistry B, 2011, 115(33): 9921-9929.[17] Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. Journal of the American Chemical Society, 2001, 123(16): 3838-3839.[18] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857.[19] Gao W C, Dong H F, Lei J P, et al. Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA[J]. Chemical Communications, 2011, 47: 5220-5222.[20] Liu F, Choi K S, Park T J, et al. Graphene-based electrochemical biosensor for pathogenic virus detection[J]. BioChip Journal, 2011, 5(2): 123-128.[21] Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9): 2653-2659.[22] Guldi D M, Rahman G M A, Jux N, et al. Functional single-wall carbon nanotube nanohybrids associating SWNTs with water-soluble enzyme model systems[J]. Journal of the American Chemical Society, 2005, 127(27): 9830-9838.[23] Zhao J W, Luo L Q, Yang X R, et al. Determination of surface pKa of SAM using an electrochemical titration method[J]. Electroanalysis, 1999, 11(15): 1108-1113.[24] Tulock J J, Blanchard G J. Role of probe molecule structure in sensing solution phase interactions in ternary systems[J]. The Journal of Physical Chemistry A, 2000, 104(36): 8340-8345.[25] Hu L Z, Han S, Liu Z Y, et al. A versatile strategy for electrochemical detection of hydrogen peroxide as well as related enzymes and substrates based on selective hydrogen peroxide-mediated boronate deprotection[J]. Electrochemistry Communications, 2011, 13(12): 1536-1538.[26] Jia W Z, Wang K, Zhu Z J, et al. One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process[J]. Langmuir, 2007, 23(23): 11896-11900. |