欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (3): 2411291.  doi: 10.61558/2993-074X.3527

• 综述 • 上一篇    下一篇

非酶电化学传感器检测茶碱的最新进展

Gustria Ernisa,b, Yulia M T A Putria, Muhammad Iqbal Syauqic, Prastika Krisma Jiwantid, Yeni Wahyuni Hartatie, Takeshi Kondof, Qonita Kurnia Anjanig, Jarnuzi Gunlazuardia,*()   

  1. a印度尼西亚大学数学与自然科学学院化学系,雅加达 16425,印度尼西亚
    b明古鲁大学数学与自然科学学院科学实验室系,明古鲁 38112,印度尼西亚
    c国家研究和创新署化学研究中心,坦格朗 15314,印度尼西亚
    d艾尔朗加大学先进技术与多学科纳米技术工程学院,泗水 60115,印度尼西亚
    e巴查查兰大学数学与自然科学学院化学系,贾蒂南戈尔 45363,印度尼西亚
    f东京理科大学纯粹与应用化学系,野田,278-8510,日本
    g贝尔法斯特女王大学药学院,医学生物学中心,97利斯本路,贝尔法斯特 BT9 7BL,英国
  • 收稿日期:2025-11-28 修回日期:2025-02-02 接受日期:2025-02-17 出版日期:2025-03-28 发布日期:2025-02-18

Recent Advances in Non-Enzymatic Electrochemical Sensors for Theophylline Detection

Ernis Gustriaa,b, Putri Yulia M T Aa, Syauqi Muhammad Iqbalc, Jiwanti Prastika Krismad, Hartati Yeni Wahyunie, Kondo Takeshif, Anjani Qonita Kurniag, Gunlazuardi Jarnuzia,*()   

  1. aDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Jakarta 16-42Indonesia
    bDepartment of Science Laboratory, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Jl. WR. Supratman, Kandang Limun, Bengkulu City, 38112, Indonesia
    cResearch Center for Chemistry, National Research and Innovation Agency, B. J. Habibie Science and Technology Area, South Tangerang, 15314, Indonesia
    dNanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
    eDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Jatinangor 45363, Indonesia
    fDepartment of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
    gSchool of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
  • Received:2025-11-28 Revised:2025-02-02 Accepted:2025-02-17 Published:2025-03-28 Online:2025-02-18
  • Contact: *E-mail: jarnuzi@ui.ac.id

摘要: 低浓度目标分析物的检测在制药、医疗保健和环境保护等各个领域具有重要意义。茶碱是一种天然生物碱,作为支气管扩张剂,可用于治疗哮喘、支气管炎和肺气肿等呼吸系统疾病,但治疗窗口较窄,成年人的安全血药浓度范围仅为55.5~111.0 µmol·L-1,太低或太高都会导致严重的副作用。因此,准确监测茶碱水平至关重要。非酶电化学传感器可提供一种快速、便携和高灵敏度的实用解决方案。本文旨在对用于茶碱检测的非酶电化学传感器的最新进展进行全面综述,重点介绍其基本原理、电氧化机制、催化效应以及改性材料对电极性能的作用。本文指出了各种改性材料的重要贡献,包括碳纳米管、石墨烯、金属氧化物和多元纳米复合材料等纳米材料,深入讨论了茶碱的电氧化机理,强调了羟基和羰基反应途径受pH和电极材料的强烈影响,以及应用于指导针对特定应用选择适当的电极材料,从而提高非酶电化学传感器性能的优质改性材料的策略。结果表明,基于二氧化钛、碳纳米管和金纳米颗粒制备的多元纳米复合材料可得到3 × 10⁻⁵ µmol·L-1的最低检测限,表明在开发高性能电化学传感器方面的巨大潜力。本文的主要结论是电极材料设计中多学科方法对于支持茶碱检测的灵敏度和选择性的重要性。尽管该领域研究已取得显著进展,但在理解茶碱更详细的氧化机制方面仍存在研究空白,特别是在pH变化和复杂环境下的茶碱电氧化机理研究面临挑战。因此,迫切需要进一步研究电极修饰和茶碱氧化机理分析,以提高传感器的准确性和稳定性,同时扩大其在药物监测和医疗诊断中的应用。通过整合各种新材料和技术方法,这篇综述有望为开发高效且经济实用的非酶电化学传感器提供重要参考。

关键词: 茶碱测定, 非酶传感器, 电化学传感器, 电极改性剂, 反应机制

Abstract:

Detection of target analytes at low concentrations is significant in various fields, including pharmaceuticals, healthcare, and environmental protection. Theophylline (TP), a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma, bronchitis, and emphysema, has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0 µmol·L-1 in adults. Accurate monitoring of TP levels is essential because too low or too high can cause serious side effects. In this regard, non-enzymatic electrochemical sensors offer a practical solution with rapidity, portability, and high sensitivity. This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection, highlighting the basic principles, electro-oxidation mechanisms, catalytic effects, and the role of modifying materials on electrode performance. Carbon-based electrodes such as glassy carbon electrodes (GCEs), carbon paste electrodes (CPEs), and carbon screen-printed electrodes (SPCEs) have become the primary choices for non-enzymatic sensors due to their chemical stability, low cost, and flexibility in modification. This article identifies the significant contribution of various modifying materials, including nanomaterials such as carbon nanotubes (CNTs), graphene, metal oxides, and multi-element nanocomposites. These modifications enhance sensors' electron transfer, sensitivity, and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples. The electro-oxidation mechanism of TP is also discussed in depth, emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials. These mechanisms guide the selection of the appropriate electrode material for a particular application. The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors. In a recent study, the combination of multi-element nanocomposites based on titanium dioxide(TiO₂), CNTs, and gold nanoparticles(AuNPs) resulted in the lowest detection limit of 3 × 10-5 µmol·L-1, reflecting the great potential of these materials for developing high-performance electrochemical sensors. The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection. In addition, there is still a research gap in understanding TP's more detailed oxidation mechanism, especially under pH variations and complex environments. Therefore, further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and stability of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics. By integrating various innovative materials and technical approaches, this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.

Key words: Theophylline detection, Non-enzymatic sensors, Electrochemical sensors, Modifier electrode, Reaction mechanism