电化学(中英文) ›› 2025, Vol. 31 ›› Issue (3): 2411291. doi: 10.61558/2993-074X.3527
Gustria Ernisa,b, Yulia M T A Putria, Muhammad Iqbal Syauqic, Prastika Krisma Jiwantid, Yeni Wahyuni Hartatie, Takeshi Kondof, Qonita Kurnia Anjanig, Jarnuzi Gunlazuardia,*()
收稿日期:
2025-11-28
修回日期:
2025-02-02
接受日期:
2025-02-17
出版日期:
2025-03-28
发布日期:
2025-02-18
Ernis Gustriaa,b, Putri Yulia M T Aa, Syauqi Muhammad Iqbalc, Jiwanti Prastika Krismad, Hartati Yeni Wahyunie, Kondo Takeshif, Anjani Qonita Kurniag, Gunlazuardi Jarnuzia,*()
Received:
2025-11-28
Revised:
2025-02-02
Accepted:
2025-02-17
Published:
2025-03-28
Online:
2025-02-18
Contact:
*E-mail: jarnuzi@ui.ac.id
摘要: 低浓度目标分析物的检测在制药、医疗保健和环境保护等各个领域具有重要意义。茶碱是一种天然生物碱,作为支气管扩张剂,可用于治疗哮喘、支气管炎和肺气肿等呼吸系统疾病,但治疗窗口较窄,成年人的安全血药浓度范围仅为55.5~111.0 µmol·L-1,太低或太高都会导致严重的副作用。因此,准确监测茶碱水平至关重要。非酶电化学传感器可提供一种快速、便携和高灵敏度的实用解决方案。本文旨在对用于茶碱检测的非酶电化学传感器的最新进展进行全面综述,重点介绍其基本原理、电氧化机制、催化效应以及改性材料对电极性能的作用。本文指出了各种改性材料的重要贡献,包括碳纳米管、石墨烯、金属氧化物和多元纳米复合材料等纳米材料,深入讨论了茶碱的电氧化机理,强调了羟基和羰基反应途径受pH和电极材料的强烈影响,以及应用于指导针对特定应用选择适当的电极材料,从而提高非酶电化学传感器性能的优质改性材料的策略。结果表明,基于二氧化钛、碳纳米管和金纳米颗粒制备的多元纳米复合材料可得到3 × 10⁻⁵ µmol·L-1的最低检测限,表明在开发高性能电化学传感器方面的巨大潜力。本文的主要结论是电极材料设计中多学科方法对于支持茶碱检测的灵敏度和选择性的重要性。尽管该领域研究已取得显著进展,但在理解茶碱更详细的氧化机制方面仍存在研究空白,特别是在pH变化和复杂环境下的茶碱电氧化机理研究面临挑战。因此,迫切需要进一步研究电极修饰和茶碱氧化机理分析,以提高传感器的准确性和稳定性,同时扩大其在药物监测和医疗诊断中的应用。通过整合各种新材料和技术方法,这篇综述有望为开发高效且经济实用的非酶电化学传感器提供重要参考。
Gustria Ernis, Yulia M T A Putri, Muhammad Iqbal Syauqi, Prastika Krisma Jiwanti, Yeni Wahyuni Hartati, Takeshi Kondo, Qonita Kurnia Anjani, Jarnuzi Gunlazuardi. 非酶电化学传感器检测茶碱的最新进展[J]. 电化学(中英文), 2025, 31(3): 2411291.
Ernis Gustria, Putri Yulia M T A, Syauqi Muhammad Iqbal, Jiwanti Prastika Krisma, Hartati Yeni Wahyuni, Kondo Takeshi, Anjani Qonita Kurnia, Gunlazuardi Jarnuzi. Recent Advances in Non-Enzymatic Electrochemical Sensors for Theophylline Detection[J]. Journal of Electrochemistry, 2025, 31(3): 2411291.
Electrode Modifier | Method | LOD(µmol·L-1) | Linearity(µmol·L-1) | Medium | pH | Mechanism route | Real sample | Ref. |
---|---|---|---|---|---|---|---|---|
Unmodified (GCE bare) | SWV DPV | 0.0130 0.0860 | 0.1-100 0.1-100 | Acetate buffer | 4.5 | Hydroxyl | drug tablet | [ |
WO3/MWCNT | CV, DPV | 0.0080 | 0.025-2.6 | H2SO4 | 1.3 | Carbonyl | pharmaceutical tablet and urine samples | [ |
TCPP(Ni)-Co | DPV | 0.0033 | 0.01-0.1 | Na2HPO4-C4H2O7 | 3.5 | Carbonyl | tea drinks | [ |
GNP-CHIT-IL hybrid/r-GO | CV, DPV | 0.0132 | 0.025-2.1 | PBS | 7.4 | — | tea, energy drink, green tea, human urine and serum | [ |
PLCY/N-CNT | CV, DPV | 0.0330 | 0.1-70.0 | H2SO4-Na2SO4 | 1.7 | Hydroxyl | green tee, oral TP sustained-release tablets | [ |
Ca2CuO3 | CV, DPV | 0.1050 | 0.250-2070 | PBS | 7.0 | Hydroxyl, Carbonyl | human urine and serum samples | [ |
LV@CNF | amperometry(i-t) | 0.0026 | 0.01-1070 | PBS | 7.0 | Hydroxyl | chocolate, coffee, black tea | [ |
MoS2/PANI@g-C3N4 | DPV | 0.0500 | 6.6-98 | PBS | 7.0 | Hydroxyl | foodstuff, energy drinks, and pharma products. | [ |
TiO2 NPs | DPV | 0.0230 | 0.023-0.2 | PBS | 6.0 | Hydroxyl | drug tablets, urine | [ |
TiO2 MPs | Amperometric | 0.0133 | 0.02-209.6 | PBS | 7.0 | Carbonyl | serum, drug tablets | [ |
ns-ZSO | DPV | 0.0030 | 0.02-0.6 | PBS | 7.0 | Carbonyl | blood serum, oranges, tea, coffee, and chocolate | [ |
GCO-gCN | CV, DPV | 0.0533 | 0.0001-0.003 | PBS | 7.0 | Carbonyl | tea, oranges, chocolate, coffee, and human blood serum | [ |
P(L-Asp)/f-MWCNT | SWV | 0.0200 | 0.1-50 | PBS | 6.0 | — | panadol extra pharmaceutical formulation samples, blood serum, and green tea | [ |
Gd2(MoO4)3 nanosheets | DPV | 0.0119 | 0.03 - 1.5 | PBS | 7.0 | Hydroxyl | green tea drink and the urine samples | [ |
AFW/Nf | CV, DPV | 2.8000 | 100-160000 | PBS | 7.0 | — | human serum, black tea, and urine samples | [ |
WS2 nano-flowers/Ag NPs composites | DPV | 0.0030 | 0.05-150 | H2SO4 | 1.0 | — | tea samples and pharmaceutical tablets | [ |
CdS/PTA/Nafion | DPV | 0.6000 | 1-200 | PBS | 8.0 | — | urine | [ |
CNOs | DPV | 0.3500 | 8.16-108.25 | PBS | 7.0 | — | human serum | [ |
AuNP-MWCNT | DPV | 0.0900 | 0.5-20 | Britton-Robison(BR) buffer | 6.0 | Carbonyl | pharmaceutical tablets and tea samples | [ |
La2O3/MWCNT nanocomposite | DPV | 0.0100 | 0.1-400.0 | PBS | 7.0 | — | human blood, serum, and urine samples | [ |
pPABSA | SWV | 7.0200 | 10-100 | PBS | 7.0 | Carbonyl Hydroxyl | tea and coffee | [ |
DMN-AuNPs | CV, DPV | 0.0096 | 0.05-2 | H2SO4 | 7.0 | — | tea and biological samples | [ |
RGO- SDS- Nafion composite film | CV, DPV | 0.0050 | 0.01-0.10, 0.1-1.0, and 1.0-40 | H2SO4 | 2-6 | Carbonyl | pharmaceutical samples | [ |
MWNT|MnO2 | DPV | 0.0100 | 0.1-20 | PBS | 6.0 | Hydroxyl | pharmaceutical sample and green tea | [ |
PAMT/AuNPs/TiO2@CuO-B/RGO | DPV | 3 × 10-5 | 0.00008-1 | ABS | 4.0 | — | real blood serum | [ |
(poly(PRO)-MWCNTs | DPV | 0.0400 | 9.66-100.5 | PBS | 3.0 | — | tea, coffee, yerba mate infusion, energy drink | [ |
NiF/AC | CV | 0.2100 | 0.5-5 | BRS | 3.0 | Hydroxyl | human urine | [ |
Chit/NH2-IL/MnOx | CV | 0.0500 | 0.2-120 | ABS | 5.0 | Hydroxyl | — | [ |
Electrode Modifier | Method | LOD (μmol·L-1) | Linearity (μmol·L-1) | Medium | pH | Mechanism route | Real Sample | Ref. | |
---|---|---|---|---|---|---|---|---|---|
MWCNTs | CV, SWV | 0.1940 | 0.8-90 | Britton Robinson buffer | 3.0 | — | plasma samples | [ | |
1E3MICl/ Fe3O4/SWCNTs | CV, SWV | 0.0500 | 0.1-300.0 | PBS | 6.0 | — | Fish, meat, tea, and soft drinks. | [ | |
Nano-CoPc | DPV | 0.1400 | 0.4-100 | PBS | 7.4 | — | Drug tablets, green tea | [ | |
CTAB | DPV | 0.1850 | 0.08-200 | PBS | 3.0 | Hydroxyl | Drug tablets, urine | [ | |
MWCNT | DPV | 0.0197 | 2-150 | Britton-Robinson(BR) buffer | 3.0 | Hydroxyl | Drug tablets, urine | [ | |
EFTAG | SWV | 15 | 20-1000 | PBS | 7.0 | — | Human blood serum, urine | [ | |
MWCNT/CuO | Potentiometric | 0.0250 | 0.1 - 10,000 | PBS | 6.0 | — | Chinese black tea, Chinese green tea, Indian black tea, Indian green tea. | [ | |
SiO2@TiO2@poly(MAA − EGDMA) | DPV | 0.0012 | 0.010-40 | PBS | 6.5 | — | tea, human blood serum, and urine | [ | |
CuO-GO | CV, DPV | 0.0083 | 0.1-3.5 | PBS | 6.0 | Hydroxyl | Urine | [ | |
CHL-GO | LSV | 0.0044 | 0.03-500 | PBS | 6.0 | Hydroxyl | Drug sample | [ | |
MIPs | DPV | 0.0024 | 5-15 | Buffer Saline | 7.4 | — | Human blood sample | [ |
Electrode Modifier | Method | LOD (μM) | Linearity(μM) | Medium | pH | Mechanism route | Real Sample | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Unmodified (SPCE bare) | CV | 10 | 55-100 | PBS | 7.4 | Carbonyl Hydroxyl | — | [ | |
b-NiS/Ppy | SWV | 0.0010 | 0.01-900000 | PBS | 6.0 | — | human urine, serum, and fresh tea leaf extracts | [ | |
RuOx -FSWCNT | Amperometric | 0.0010 | 0.005-500 | H2SO4 | — | Carbonyl | drug tablets | [ | |
GQD | DPV | 0.200 | 1-700 | PBS | 7.0 | Hydroxyl | oral solution, urine | [ | |
BiOBr | DPV Amperometric | 0.00072 0.00035 | 0.001-2.011 0.002-1.48 | PBS | 7.0 | Carbonyl | orange Juice | [ | |
DNA aptamer-BDD-Au | DPV | 0.052 | 1-100 | PBS | 7.4 | — | blood serum | [ |
Electrode | Electrode Modifier | Method | LOD(μmol·L-1) | Linearity(μmol·L-1) | Medium | pH | Mechanism route | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|---|
BDD | — | LSV | — | 1-400 | buffer solution containing NaClO4 | 1.8 | — | coffee and cola | [ |
BDD | — | DPV SWV | 0.9100 1.4500 | 2-380 | H2SO4 | 1.5 | — | pharmaceuticals, human urine | [ |
BDD | NiNPs | SWV, CV | 2.7900 | 30-100 | PBS | 3.0 | hydroxyl | artificial urine | [ |
CFE | — | CV, FSV | 0.5000 | 0.50-30 | PBS | 7.4 | — | coffee | [ |
PGE | CTAB | CV, DPV | 0.0026 | 0.1-1.3 | PBS | 2.0 | Hydroxyl | tablet and urine samples | [ |
PGE | NiO/MWCNT/NNaM | CV, DPV | 0.3610 | 5-200 | Britton-Robinson buffer | 2.0 | — | human urine, black tea, Earl Grey, and bitter chocolate | [ |
CBE | PLA (polylactic acid) | SWV | 1.2000 | 5-150 | PBS | 7.0 | — | TP tablets and artificial urine | [ |
Electrode | Electrode Modifier | Method | LOD (μmol·L-1) | Linearity (µmol·L-1) | Medium | pH | Mechanism route | Real Sample | Ref. |
---|---|---|---|---|---|---|---|---|---|
Au | AuNPs/Aptamer | SWV | 0. 0700 | 0.1-80 | tris-HCl buffer | 7.5 | — | serum | [ |
Au | AgNPs/Aptamer | LSV | 0.0500 | 0.50-70 | PBS | 7.4 | — | serum | [ |
Au | MIP(Phenol) | Capacitance | 1 | 1-15 | borate buffer solution | 9.2 | — | — | [ |
ITO | MIP(MAA-EGDMA) | CV | — | 2000- 4000 | aqueous | 7.0 | — | — | [ |
ITO and Si | MIP(MAA-EGDMA) | CV | — | — | aqueous | 7.0 | — | aqueous | [ |
[1] | Bartella L, Di Donna L, Napoli A, Siciliano C, Sindona G, Mazzotti F. A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry[J]. Food Chem., 2019, 278(8): 261-266. |
[2] | Barnes P J. Theophylline[J]. Am. J. Respir. Crit. Care Med., 2013, 188(8): 901-906. |
[3] | Singh N, Shreshtha A K, Thakur M S, Patra S. Xanthine scaffold: scope and potential in drug development[J]. Heliyon, 2018, 4(10): 1-38. |
[4] |
Wang T, Randviir E P, Banks C E. Detection of theophylline utilising portable electrochemical sensors[J]. Analyst, 2014, 139(8): 2000-2003.
doi: 10.1039/c4an00065j pmid: 24603689 |
[5] | Crapnell R D, Banks C E. Electroanalytical overview: The electroanalytical detection of theophylline[J]. Talanta Open, 2021, 3(1): 1-13. |
[6] |
Roche N. Systemic medications in chronic obstructive pulmonary disease: Use and outcomes[J]. Clin. Chest. Med., 2020, 41(3): 485-494.
doi: S0272-5231(20)30033-2 pmid: 32800201 |
[7] | Wang J, Cheng W B, Meng F Y, Yang M, Pan Y, Miao P. Hand-in-hand RNA nanowire-based aptasensor for the detection of theophylline[J]. Biosens. Bioelectron., 2018, 101(3): 153-158. |
[8] | Rao S S C, Mudipalli R S, Mujica V, Utech C L, Zhao X, Conklin J L. An open-label trial of theophylline for functional chest pain[J]. Dig. Dis. Sci., 2002, 47(12): 2763-2768. |
[9] |
Rabe K F, Magnussen H, Dent G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants[J]. Eur. Respir. J., 1995, 8(4): 637-642.
pmid: 7664866 |
[10] | Bell M, Jackson E, Mi Z, Mccombs J, Carcillo J. Low-dose theophylline increases urine output in diuretic-dependent critically ill children Neonatal and Pediatric Intensive Care[J]. Intensive Care Med., 1998, 24: 1099-1105. |
[11] |
Rieg T, Steigele H, Schnermann J, Richter K, Osswald H, Vallon V. Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine[J]. J. Pharmacol. Exp. Ther., 2005, 313(1): 403-409.
pmid: 15590766 |
[12] |
Cosio B G, Iglesias A, Rios A, Noguera A, Sala E, Ito K, Barnes P J, Agusti A. Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD[J]. Thorax, 2009, 64(5): 424-429.
doi: 10.1136/thx.2008.103432 pmid: 19158122 |
[13] | Saleh T S F, Calixto J B, Medeiros Y S. Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy[J]. Br. J. Pharmacol., 1996, 118(3): 811-819. |
[14] | Peng H, Su Q, Lin Z C, Zhu X H, Peng M S, Lv Z B. Potential suppressive effects of theophylline on human rectal cancer SW480 cells in vitro by inhibiting YKL-40 expression[J]. Oncol. Lett., 2018, 15(5): 7403-7408. |
[15] | Chang Y L, Hsu Y J, Chen Y, Wang Y W, Huang S M. Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines[J]. Oncotarget, 2017, 8(60): 101461-101474. |
[16] | Kidney J, Dominguez M, Taylo P M, Rose M, Chung K F, Barnes P J. Immunomodulation by theophylline in asthma: Demonstration by withdrawal of therapy[J]. Am. J. Respir. Crit. Care Med., 1995, 151(6): 1907-1914. |
[17] | Ejuh G W, Ndjaka J M B, Tchangnwa Nya F, Ndukum P L, Fonkem C, Tadjouteu Assatse Y, Yossa Kamsi R A. Determination of the structural, electronic, optoelectronic and thermodynamic properties of the methylxanthine molecules theophylline and theobromine[J]. Opt. Quantum Electron., 2020, 52(11): 1-22. |
[18] |
Sohn J A, Kim H S, Oh J, Cho J Y, Yu K S, Lee J, Shin S H, Lee J A, Choi C W, Kim E K, Kim B. Il, Park E A. Prediction of serum theophylline concentrations and cytochrome P450 1A2 activity by analyzing urinary metabolites in preterm infants[J]. Br. J. Clin. Pharmacol., 2017, 83(6): 1279-1286.
doi: 10.1111/bcp.13211 pmid: 27995649 |
[19] | Kilele J C, Chokkareddy R, Rono N, Redhi G G. A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations[J]. J. Taiwan Inst. Chem. Eng., 2020, 111: 228-238. |
[20] | Florey K. Analytical profiles of drug substances, Volume 5, Academic Press Rapid Manuscript Reproduction[M]. New Jersey, Academic Press, 1976. |
[21] | Zhang Z Y, Fasco M J, Kaminsky L S. Determination of theophylline and its metabolites in rat liver microsomes and human urine by capillary electrophoresis[J]. J. Chromatogr. B Biomed. Sci. Appl., 1995, 665(1): 201-208. |
[22] | Linhares M C, Kissinger P T. Pharmacokinetic studies using micellar electrokinetic capillary chromatography with in vivo capillary ultrafiltration probes[J]. J. Chromatogr. B Biomed. Sci. Appl., 1993, 615(2): 327-333. |
[23] | Arinobu T, Hattori H, Kumazawa T, Lee X P, Mizutani Y, Katase T, Kojima S, Omori T, Kaneko R, Ishii A, Seno H. High-throughput determination of theophylline and caffeine in human serum by conventional liquid chromatography-mass spectrometry[J]. Forensic Toxicol., 2009, 27(1): 1-6. |
[24] | Tzanavaras P D, Zacharis C K, Themelis D G. Rapid determination of methylxanthines in real samples by high-performance liquid chromatography using the new FastGradient® narrow-bore monolithic column[J]. Talanta, 2010, 81(4-5): 1494-1501. |
[25] | García-Miranda Ferrari A, Rowley-Neale S J, Banks C E. Screen-printed electrodes: Transitioning the laboratory in-to-the field[J]. Talanta Open, 2021, 3(1): 1-10. |
[26] | Syauqi M I, Prasetia P, Gunlazuardi J. The influence of sodium alginate in water-based electrolyte on the morphology of TiO2 nanotube prepared by anodization method[J]. Mater. Chem. Phys., 2023, 296(4): 1-9. |
[27] | Hassan M H, Vyas C, Grieve B, Bartolo P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing[J]. Sensors, 2021, 21(14): 1-26. |
[28] | Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid S S, Mahshid S. A review on recent advancements in electrochemical detection of dopamine using carbonaceous nanomaterials[J]. Microchim. Acta, 2019, 186(773): 1-22. |
[29] |
Stredansky M, Pizzariello A, Miertus S, Svorc J. Selective and sensitive biosensor for theophylline based on xanthine oxidase electrode[J]. Anal. Biochem., 2000, 285(2): 225-229.
pmid: 11017706 |
[30] |
Wang J, Dempsey E, Ozsoz M. Amperometric enzyme electrode for Teophylline[J]. Analyst, 1991, 116: 997-999.
pmid: 1801607 |
[31] |
Ferapontova E E, Shipovskov S, Gorton L. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes[J]. Biosens. Bioelectron., 2007, 22(11): 2508-2515.
pmid: 17081743 |
[32] |
Christenson A, Dock E, Gorton L, Ruzgas T. Direct heterogeneous electron transfer of theophylline oxidase[J]. Biosens. Bioelectron., 2004, 20(2): 176-183.
pmid: 15308219 |
[33] | Li H, Wang Z H, Wu B W, Liu X H, Xue Z H, Lu X Q. Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor[J]. Electrochim. Acta, 2012, 62: 319-326. |
[34] |
Dong J, Hou J Y, Jiang J X, Ai S Y. Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe[J]. Anal. Chim. Acta, 2015, 885: 92-97.
doi: 10.1016/j.aca.2015.05.033 pmid: 26231893 |
[35] | Aghoutane Y, Burhan H, Sen F, Bouchikhi B, El Bari N. Glyphosate detection via a nanomaterial-enhanced electrochemical molecularly imprinted polymer sensor[J]. J. Anal. Sci. Technol., 2024, 15(1): 1-13. |
[36] | Xie Y, Yu Y H, Lu L M, Ma X, Gong L, Huang X G, Liu G B, Yu Y F. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection[J]. J. Electroanal. Chem., 2018, 812(5): 82-89. |
[37] |
Cheng X, Wang Q J, Zhang S, Zhang W D, He P D, Fang Y Z. Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode[J]. Talanta, 2007, 71(3): 1083-1087.
doi: 10.1016/j.talanta.2006.06.001 pmid: 19071416 |
[38] | Tasić Ž Z, Petrović Mihajlović M B, Simonović A T, Radovanović M B, Antonijević M M. Recent advances in electrochemical sensors for caffeine determination[J]. Sensors, 2022, 22(23): 9185. |
[39] | Deng G H, Zhu Q, Rebstock J, Neves-Garcia T, Baker L R. Direct observation of bicarbonate and water reduction on gold: understanding the potential dependent proton source during hydrogen evolution[J]. Chem. Sci., 2023, 14(17): 4523-4531. |
[40] | Goyal A, Marcandalli G, Mints V A, Koper M T M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions[J]. J. Am. Chem. Soc., 2020, 142(9): 4154-4161. |
[41] |
Sutanto L G, Sabilla S, Wardhana B Y, Ramadani A, Sari A P, Anjani Q K, Basirun W J, Amrillah T, Amalina I, Jiwanti P K. Carbon nanomaterials as electrochemical sensors for theophylline: a review[J]. RSC Adv., 2024, 14(39): 28927-28942.
doi: 10.1039/d4ra03585b pmid: 39263434 |
[42] | Uslu B, Ozkan S A. Electroanalytical application of carbon based electrodes to the pharmaceuticals[J]. Anal. Lett., 2007, 40(5): 817-853. |
[43] |
Mccreery R L. Advanced carbon electrode materials for molecular electrochemistry advanced carbon electrode materials for molecular electrochemistry[J]. Chem. Rev., 2008, 108(7): 2646-2687.
doi: 10.1021/cr068076m pmid: 18557655 |
[44] | Gan T, Zhao A X, Wang Z K, Liu P, Sun J Y, Liu Y M. An electrochemical sensor based on SiO2@TiO2-embedded molecularly imprinted polymers for selective and sensitive determination of theophylline[J]. J. Solid State Electrochem., 2017, 21(12): 3683-3691. |
[45] | Beitollahi H, Movlaee K, Ganjali M R, Norouzi P. A sensitive graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate modified carbon paste electrode for the concurrent determination of isoproterenol, acetaminophen, tryptophan and theophylline in human biological fluids[J]. J. Electroanal. Chem., 2017, 799(16): 576-582. |
[46] | Aschemacher N A, Gegenschatz S A, Teglia C M, Siano Á S, Gutierrez F A, Goicoechea H C. Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(L-proline) decorated carbon nanotubes in biological and food samples[J]. Talanta, 2024, 267(3): 1-13. |
[47] | Güney S, Cebeci F. Selective electrochemical sensor for theophylline based on an electrode modified with imprinted sol-gel film immobilized on carbon nanoparticle layer[J]. Sensors Actuat. B-Chem., 2015, 208: 307-314. |
[48] | Ganjali M.R, Dourandish Z, Beitollahi H, Tajik S, Hajiaghababaei L, Larijani B. Highly sensitive determination of theophylline based on graphene quantum dots modified electrode[J]. Int. J. Electrochem. Sci., 2018, 13(3): 2448-2461. |
[49] | Rezvani S A, Soleymanpour A. Application of a sensitive electrochemical sensor modified with WO3 nanoparticles for the trace determination of theophylline[J]. Microchem. J., 2019, 149(6): 1-8. |
[50] | Zhu Y, Zhang Y, Hao X, Xia Q, Zhang S. Highly sensitive detection of theophylline by differential pulse voltammetry using zinc oxide nanoparticles and multiwalled carbon nanotubes-modified carbon paste electrode[J]. Chem. Pap., 2024, 78(14): 7719-7728. |
[51] |
Malode S J, Shetti N P, Nandibewoor S T. Colloids and surfaces B : Biointerfaces voltammetric behavior of theophylline and its determination at multi-wall carbon nanotube paste electrode[J]. Colloid Surface B, 2012, 97: 1-6.
doi: 10.1016/j.colsurfb.2012.04.010 pmid: 22584261 |
[52] | Cinková K, Zbojeková N, Vojs M, Marton M, Samphao A, Švorc L. Electroanalytical application of a boron-doped diamond electrode for sensitive voltammetric determination of theophylline in pharmaceutical dosages and human urine[J]. Anal. Methods, 2015, 7(16): 6755-6763. |
[53] | Killedar L S, Shanbhag M M, Shetti N P, Malode S J, Veerapur R S, Reddy K R. Novel graphene-nanoclay hybrid electrodes for electrochemical determination of theophylline[J]. Microchem. J., 2021, 165(7): 1-8. |
[54] | Fu E, Khederlou K, Lefevre N, Ramsey S A, Johnston M L, Wentland L. Progress on electrochemical sensing of pharmaceutical drugs in complex biofluids[J]. Chemosensors, 2023, 11(8): 1-24. |
[55] | Gañán J, Martínez-García G, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Nanomaterials-modified electrochemical sensors for sensitive determination of alkaloids: Recent trends in the application to biological, pharmaceutical and agri-food samples[J]. Microchem. J., 2023, 184(1): 1-19. |
[56] | Arya S K, Singh S P, Malhotra B D. Electrochemical techniques in biosensors[M]. John Wiley & Sons, Ltd, New Delhi, 2007. |
[57] | Kilele J C, Chokkareddy R, Rono N, Redhi G G. A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations[J]. J. Taiwan Inst. Chem. Eng., 2020, 111(6): 228-238. |
[58] |
Chiarotto I, Mattiello L, Pandolfi F, Rocco D, Feroci M, Petrucci R. Electrochemical oxidation of theophylline in organic solvents: HPLC-PDA-ESI-MS/MS analysis of the oxidation products[J]. ChemElectroChem, 2019, 6(17): 4511-4521.
doi: 10.1002/celc.201901071 |
[59] | Yang Y J. Simultaneous determination of theophylline and uric acid on cadmium sulfide nanoparticles/phosphotungstic acid/nafion modified glassy carbon electrode[J]. Sens. Lett., 2015, 13(3): 223-229. |
[60] | Ohno H. Electrochemical aspects of ionic liquids, Second Ed.[M]. John Wiley & Sons, Inc., Publication, New Jersey, 2011. |
[61] | Menacherry S P M, Aravind U K, Aravindakumar C T. Oxidative degradation of pharmaceutical waste, theophylline, from natural environment[J]. Atmosphere(Basel)., 2022, 13(5): 1-16. |
[62] | Buddanavar A T, Nandibewoor S T. Mechanism of oxidation of theophylline by silver(III) periodate complex in aqueous alkaline medium[J]. Phys. Chem. Commun., 2016, 3(2): 87-94. |
[63] | Hosahalli R V, Savanur A P, Nandibewoor S T, Chimatadar S A. Kinetics and mechanism of the autocatalyzed oxidation of theophylline by permanganate in aqueous perchloric acid medium[J]. J. Solution Chem., 2012, 41(4): 567-580. |
[64] | Saidarova L G, Chelnokova I A, Il’ina M A, Makhmutova G F, Akhmatkhanova F F, Budnikov H C. Batch-injection amperometric determination of caffeine and theophylline on an electrode modified by carbon nanotubes and ruthenium oxides[J]. J. Anal. Chem., 2020, 75(8): 1066-1071. |
[65] | Kandeepan Y, Subramaniyan P, Chen T W, Chen S M, Chang Y H, Al-Mohaimeed A M, Al-onazi W A, Elshikh M S. Graphitic carbon nitride supported Gd(OH)3/CuO nano-rods: A high-performance catalyst for electro-catalytic theophylline detection[J]. J. Taiwan Inst. Chem. Eng., 2024, 157(4): 1-10. |
[66] | Sirés I, Brillas E, Oturan M A, Rodrigo M A, Panizza M. Electrochemical advanced oxidation processes: Today and tomorrow. A review[J]. Environ. Sci. Pollut. Res., 2014, 21(14): 8336-8367. |
[67] | Mahesh B V, Raman R K S. Role of nanostructure in electrochemical corrosion and high temperature oxidation: A review[J]. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45(12): 5799-5822. |
[68] | Jiwanti P K, Sari A P, Wafiroh S, Hartati Y W, Gunlazuardi J, Putri Y M T A, Kondo T, Anjani Q K. An electrochemical sensor of theophylline on a boron-doped diamond electrode modified with nickel nanoparticles[J]. Sensors, 2023, 23(20): 1-12. |
[69] | MansouriMajd S, Teymourian H, Salimi A, Hallaj R. Fabrication of electrochemical theophylline sensor based onmanganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode[J]. Electrochim. Acta, 2013, 108: 707-716. |
[70] | Janaj A A, Shetti N P, Malode S J. Bukkitgar S D, Kulkarni R M. TiO2 nanoparticles modified sensor for theophylline drug[J]. Mater. Today Proc., 2019, 18: 606-612. |
[71] | Singh G, Kushwaha A, Sharma M. Ultra-trace detection of caffeine and theophylline with high sensitivity and selectivity using Gd2(MoO4)3 nanosheets[J]. Mater. Today Commun., 2022, 31(2): 1-16. |
[72] | Mohamed H M. Screen-printed disposable electrodes: Pharmaceutical applications and recent developments[J]. TrAC-Trends Anal. Chem., 2016, 82: 1-11. |
[73] | Yıldız C, Bayraktepe D E, Yazan Z, Önal M. Bismuth nanoparticles decorated on Na-montmorillonite-multiwall carbon nanotube for simultaneous determination of heavy metal ions- electrochemical methods[J]. J. Electroanal. Chem., 2022, 910(7): 1-7. |
[74] | Câmpean A, Tertis M, Săndulescu R. Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode[J]. Cent. Eur. J. Chem., 2011, 9(4): 688-700. |
[75] | Chen T W, Chinnapaiyan S, Chen S M, Mahmoud A H, Elshikh M S, Ebaid H, Yassin M T. Facile sonochemical synthesis of rutile-type titanium dioxide microspheres decorated graphene oxide composite for efficient electrochemical sensor[J]. Ultrason. Sonochem., 2020, 62(3): 1-7. |
[76] | Veerapandi G, Lavanya N, Sekar C. Ca2CuO3 perovskite nanomaterial for electrochemical sensing of four different analytes in the xanthine derivatives family[J]. Mater. Chem. Phys., 2023, 295(3): 1-10. |
[77] | Iranmanesh T, Jahani S, Foroughi M M, Zandi M S, Hassani Nadiki H. Synthesis of La2O3/MWCNT nanocomposite as the sensing element for electrochemical determination of theophylline[J]. Anal. Methods, 2020, 12(35): 4319-4326. |
[78] | Yang Y J, Li W K. High sensitive determination of theophylline based on manganese oxide nanoparticles/multiwalled carbon nanotube nanocomposite modified electrode[J]. Ionics, 2015, 21(4): 1121-1128. |
[79] | Wang Y Z, Ding Y P, Li L, Hu P. Nitrogen-doped carbon nanotubes decorated poly(L-Cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous determination of theophylline and caffeine[J]. Talanta, 2018, 178(3): 449-457. |
[80] | Murugan E, Dhamodharan A. Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode[J]. Diam. Relat. Mater., 2021, 120(10): 1-12. |
[81] | Ghanbari M H, Norouzi Z, Etzold B J M. Increasing sensitivity and selectivity for electrochemical sensing of uric acid and theophylline in real blood serum through multinary nanocomposites[J]. Microchem. J., 2023, 191(9): 108836. |
[82] | Pang L Y, Jia X, Wang P, Wang Y L, Yang Y H, Liu H. Bimetallic synergy boost TCPP(Ni)-Co MOF as the high-performance electrochemical sensor for enhanced detection of trace theophylline[J]. Microchem. J., 2022, 183(13): 1-8. |
[83] |
Yang G M, Zhao F Q, Zeng B Z. Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine[J]. Talanta, 2014, 127: 116-122.
doi: 10.1016/j.talanta.2014.03.029 pmid: 24913865 |
[84] | Vinoth S, Wang S F. Lanthanum vanadate-based carbon nanocomposite as an electrochemical probe for amperometric detection of theophylline in real food samples[J]. Food Chem., 2023, 427(30): 1-17. |
[85] | Subramaniyan P, Kandeepan Y, Chen T W, Chen S M, Al-onazi W A, Ali M A, Elshikh M S. Size dependent catalytic activities of facile synthesized strontium zinc oxide for the electrooxidation of theophylline in food samples[J]. Colloid Surface A, 2023, 674(21): 1-12. |
[86] | Mekassa B, Tessema M, Chandravanshi B S. Simultaneous determination of caffeine and theophylline using square wave voltammetry at poly(L-aspartic acid)/functionalized multi-walled carbon nanotubes composite modified electrode[J]. Sens. Bio-Sensing Res., 2017, 16(6): 46-54. |
[87] | Karthika A, Sudhakar C, Suganthi A, Rajarajan M. Eco-friendly synthesis of aloe vera plant extract decorated iron tungstate nanorods immobilized Nafion for selective and sensitive determination of theophylline in blood serum, black tea and urine samples[J]. J. Sci. Adv. Mater. Devices, 2019, 4(4): 554-560. |
[88] | Wang H B, Zhang H D, Zhang Y H, Chen H, Xu L L, Huang K J, Liu Y M. Tungsten disulfide nano-flowers/silver nanoparticles composites based electrochemical sensor for theophylline determination[J]. J. Electrochem. Soc., 2015, 162(7): B173-B179. |
[89] | An R, Kuang W Z, Li Z J, Mu T C, Luo H X. A Simple strategy for the simultaneous determination of dopamine, uric acid, L-tryptophan and theophylline based on a carbon nano-onions modified electrode[J]. Processes, 2023, 11(9): 1-15. |
[90] | Da Silva W, Ghica M E, Brett C M A. Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline[J]. Anal. Methods, 2018, 10(47): 5634-5642. |
[91] | Jesny S, Kumar K G. Non-enzymatic electrochemical sensor for the simultaneous determination of xanthine, its methyl derivatives theophylline and caffeine as well as its metabolite uric acid[J]. Electroanalysis, 2017, 29(7): 1828-1837. |
[92] | Zhang H, Wu S, Xing Z, Wang H B, Liu Y M. A highly sensitive electrochemical sensor for theophylline based on dopamine-melanin nanosphere(DMN)-gold nanoparticles(AuNPs)-modified electrode[J]. Appl. Phys. A Mater. Sci. Process., 2021, 127(11): 1-9. |
[93] | Hamidi M, Zarei K. Electrochemical determination of theophylline on a glassy carbon electrode modified with reduced graphene oxide-sodium dodecyl sulfate-Nafion composite film[J]. Russ. Chem. Bull., 2020, 69(11): 2107-2112. |
[94] | Thanh N M, Nam N G, Dung N N, Le V T S, Thu P T K, Man N Q, Phong L H, Binh N T, Khieu D Q. Electrochemical determination of theophylline using a nickel ferrite/activated carbon-modified electrode[J]. Mater. Res. Express, 2024, 11(5): 1-15. |
[95] |
Bellido-Milla D, Cubillana-Aguilera L M, El Kaoutit M, Hernández-Artiga M P, de Cisneros J L H H, Naranjo-Rodríguez I, Palacios-Santander J M. Recent advances in graphite powder-based electrodes[J]. Anal. Bioanal. Chem., 2013, 405(11): 3525-3539.
doi: 10.1007/s00216-013-6816-2 pmid: 23446912 |
[96] | Attia A K, Al-Ghobashy M A, El-Sayed G M, Kamal S M. Voltammeric monitoring of linezolid, meropenem and theophylline in plasmas[J]. Anal. Biochem., 2018, 545(5): 54-64. |
[97] | Al-haidari R A, Abdallah N A, Al-oqail M M, Al-sheddi E S. Nanoparticles based solid contact potentiometric sensor for the determination of theophylline in different types of tea extract[J]. Inorg. Chem. Commun., 2020, 119(9): 1-6. |
[98] | Patil V B, Malode S J, Mangasuli S N, Tuwar S M, Mondal K, Shetti N P. An electrochemical electrode to detect theophylline based on copper oxide nanoparticles composited with graphene oxide[J]. Micromachines, 2022, 13(8): 1-14. |
[99] | Shanbhag M M, Shetti N P, Malode S J, Veerapur R S, Reddy K R. Cholesterol intercalated 2D graphene oxide sheets fabricated sensor for voltammetric analysis of theophylline[J]. FlatChem, 2021, 28(4): 1-11. |
[100] | Hegde R N, Hosamani R R, Sharanappa T. Electrochemical oxidation and determination of theophylline at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing agent electrochemical oxidation and determination of theophylline at a carbon paste electrode using cetyltrimethyl A[J]. Anal. Lett., 2009, 42(16): 2665-2682. |
[101] | Emamian R, Ebrahimi M, Karimi-Maleh H. Electrochemical platform based on synergic effect of Fe3O4/SWCNTs and 1-ethyl-3-methyl imidazolium chloride as sensor for determination of xanthine and theophylline in food samples[J]. J. Electrochem. Soc., 2018, 165(14): B762-B766. |
[102] | Yang G J, Wang K, Xu J J, Chen H Y. Determination of theophylline in drugs and tea on nanosized cobalt phthalocyanine particles modified carbon paste electrode[J]. Anal. Lett., 2004, 37(4): 629-643. |
[103] | Aaryashree A, Ohishi T, Yoshimi Y. A disposable sensor chip using a paste electrode with surface-imprinted graphite particles for rapid and reagentless monitoring of theophylline[J]. Molecules, 2022, 27(8): 1-15. |
[104] | Wahyuni W T, Putra B R, Fauzi A, Ramadhanti D, Rohaeti E, Heryanto R. The comparison effects of NaOH and KOH as solvents for silica extraction from two different coal fly ashes[J]. Indones. J. Chem. Res., 2021, 9(2): 129-136. |
[105] | Wang J, Xu Z, Zhang M Q, Liu J S, Zou H Q, Wang L D. Improvement of electrochemical performance of screen-printed carbon electrodes by UV/ozone modification[J]. Talanta, 2019, 192(2): 40-45. |
[106] | Balaji R, Maheshwaran S, Chen S M, Chandrasekar N, Ethiraj S, Samuel M S, Renganathan V. High-performance catalytic strips assembled with BiOBr Nano-rose architectures for electrochemical and SERS detection of theophylline[J]. Chem. Eng. J., 2021, 425(25): 1-13. |
[107] |
Muthukumaran P, Ramya R, Thivya P, Wilson J, Ravi G. Nanocomposite based on restacked crystallites of b-NiS and Ppy for the determination of theophylline and uric acid on screen-printed[J]. New J. Chem., 2019, 43(48): 19397-19407.
doi: 10.1039/c9nj04246f |
[108] | Hartati Y W, Syafira R S, Irkham I, Zakiyyah S N, Gunlazuardi J, Kondo T, Anjani Q K, Jiwanti P K. A BDD-Au/SPCE-based electrochemical DNA aptasensor for selective and sensitive detection of theophylline[J]. Diam. Relat. Mater., 2024, 150(10): 1-10. |
[109] | Kondo T. Conductive boron-doped diamond powder/nanoparticles for electrochemical applications[J]. Chem. Lett., 2021, 50(4): 733-741. |
[110] | Tago S, Ochiai T, Suzuki S, Hayashi M, Kondo T, Fujishima A. Flexible boron-doped diamond(BDD) electrodes for plant monitoring[J]. Sensors, 2017, 17(7): 1-8. |
[111] | Ivandini T A, Einaga Y. Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications[J]. Chem. Commun., 2017, 53(8): 1338-1347. |
[112] |
Kondo T, Udagawa I, Aikawa T, Sakamoto H, Shitanda I, Hoshi Y, Itagaki M, Yuasa M. Enhanced sensitivity for electrochemical detection using screen-printed diamond electrodes via the random microelectrode array effect[J]. Anal. Chem., 2016, 88(3): 1753-1759.
doi: 10.1021/acs.analchem.5b03986 pmid: 26750090 |
[113] | Spãtaru N, Sarada B V, Tryk D A, Fujishima A. Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application[J]. Electroanalysis, 2002, 14(11): 721-728. |
[114] | Annu, Sharma S, Jain R, Raja A N. Review—pencil graphite electrode: an emerging sensing material[J]. J. Electrochem. Soc., 2020, 167(3): 1-10. |
[115] | Magdum P A, Pattar V P, Nandibewoor S T. Electrochemical characterization and determination of theophylline at a graphite pencil electrode using cetyltrimethyl ammonium bromide as an enhancing agent[J]. Anal. Bioanal. Electrochem., 2015, 7(4): 426-438. |
[116] | Fitoz A, Yazan Z, Önal M. Simultaneous trace electrochemical determination of xanthine theophylline and theobromine with a novel sensor based on a composite including metal oxide nanoparticle multi-walled carbon nanotube and nano-Na-montmorillonite clay[J]. Electroanalysis, 2021, 33(10): 2226-2234. |
[117] | Lu W, Zu M, Byun J H, Kim B S, Chou T W. State of the art of carbon nanotube fibers: Opportunities and challenges[J]. Adv. Mater., 2012, 24(14): 1805-1833. |
[118] | Huang J. Porous carbon materials for clean energy[M]. CRC Press (Taylor & Francis Group), New York, 2024. |
[119] | Reskety A A, Chamjangali M A, Boujnane M, Brajter-Toth A. High sensitivity and fast oxidation of caffeine in coffee and theophylline at nanostructured electrodes[J]. Electroanalysis, 2016, 28(10): 2506-2513. |
[120] | Fernandes-Junior W S, Orzari L O, Kalinke C, Bonacin J A, Janegitz B C. A miniaturized additive-manufactured carbon black/PLA electrochemical sensor for pharmaceuticals detection[J]. Talanta, 2024, 275(12): 1-10. |
[121] | Chen X F, Guo Z Z, Tang Y G, Shen Y, Miao P. A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection[J]. Anal. Chim. Acta, 2018, 999(3): 54-59. |
[122] | Wang Z H, Kang J W, Liu X Y, Ma Y J. Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer[J]. Int. J. Polym. Anal. Charact., 2007, 12(2): 131-142. |
[123] |
Kindschy L M, Alocilja E C. A molecularly imprinted polymer on indium tin oxide and silicon[J]. Biosens. Bioelectron., 2005, 20(10): 2163-2167.
pmid: 15741092 |
[124] | Kindschy L M, Alocilja E C. Development of a molecularly imprinted biomimetic electrode[J]. Sensors, 2007, 7(8): 1630-1642. |
[1] | 罗大娟, 刘冰倩, 覃蒙颜, 高荣, 苏丽霞, 苏永欢. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J]. 电化学(中英文), 2022, 28(8): 2110191-. |
[2] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[3] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[4] | 王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358. |
[5] | 戴琬琳, 鲁志伟, 叶建山. 二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定[J]. 电化学(中英文), 2019, 25(2): 260-269. |
[6] | 董鹏飞, 李娜, 赵海燕, 崔敏, 张聪, 任聚杰, 藉雪平. Keggin 型磷钨酸盐修饰碳糊电极传感多巴胺的研究[J]. 电化学(中英文), 2018, 24(5): 555-562. |
[7] | 王慧娟. 超薄Co3O4纳米片薄膜制备及其电化学传感器性能[J]. 电化学(中英文), 2016, 22(6): 631-635. |
[8] | 林丽清,赵成飞,蒋周倩,翁少煌,谢晓兰,林新华*. 基于DNA聚合酶I的新型电化学传感器及其胰腺癌K-ras基因点突变检测[J]. 电化学(中英文), 2015, 21(1): 72-77. |
[9] | 杨妍,喻鹏,张小华*,陈金华*. “金标银染”放大技术的羟基自由基灵敏检测[J]. 电化学(中英文), 2015, 21(1): 22-28. |
[10] | 黄春芳,姚桂红,邱建丁*. 表面分子印迹磁性纳米粒子的制备及其血红蛋白传感应用[J]. 电化学(中英文), 2014, 20(6): 521-526. |
[11] | 朱成周,韩磊,董绍俊*. 基于功能性纳米材料的新型电化学界面的构筑以及相关应用(英文)[J]. 电化学(中英文), 2014, 20(3): 219-233. |
[12] | 刘斌, 黄咏星, 连惠婷, 吴红梅. 分子印迹电化学传感器的制备及其对啶虫脒的响应特性[J]. 电化学(中英文), 2011, 17(3): 323-328. |
[13] | 何苗, 陈伟, 许雄伟, 刘爱林, 林新华, . 酶联放大安培检测基因传感器的封闭方式[J]. 电化学(中英文), 2010, 16(2): 227-232. |
[14] | 卜宪章, 肖桂武, 马林, 何星存, 古练权. 4 ,5-二取代-1 ,2-苯醌的电化学合成及反应机制[J]. 电化学(中英文), 2000, 6(1): 51-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||