[1] Somorjai G A. Introduction to surface chemistry and catalysis[M]. New York, Wiley: 1994.[2] Wimmer E, Fu C L, Freeman A. J. Catalytic promotion and poisoning - all-electron local-density-functional theory of CO on Ni(001) surfaces coadsorbed with K or S[J]. Physical Review Letters.1985, 55 (23): 2618-2621.[3] Feibelman P J, Hamann D R. Modification of transition metal electronic structure by P, S, Cl, and Li Adatoms[J]. Surface Science.1985, 149: 48-66.[4] Garfunkel E L, Farias M H, Somorjai G A. The modification of benzene and carbon-monoxide adsorption on Pt(111) by the coadsorption of potassium or sulfur[J]. Journal of the American Chemical Society, 1985, 107 (2): 349-353.[5] Gdowski G E, Madix R J. The effect of sulfur on CO adsorption desorption on Pt(S)- 9(111)X(100)[J]. Surface Science.1982, 115(3): 524-540.[6] Jorgensen S W, Madix R J. Steric and electronic effects of sulfur on CO adsorbed on Pd(100)[J]. Surface Science, 1985, 163 (1): 19-38.[7] Kiskinova M, Szabo A, Yates J T. CO adsorption on Pt(111) modified with sulfur. Journal of Chemical Physics[J].1988, 89 (12): 7599-7608.[8] Lanzillotto A M, Bernasek S L. The effect of the sulfur induced reconstruction of the Pt(S)- 6(111) X (100) surface on CO adsorption[J]. Surface Science, 1986, 175(1): 45-54.[9] Protopopoff E, Marcus P. Coadsorption of sulphur and hydrogen on Pt(111) studied by radiotracer and electrochemical techniques[J]. Surface Science, 1986, 169: L237-L244.[10] Protopopoff E, Marcus P. Effect of chemisorbed sulfur on the electrochemical hydrogen adsorption and recombination reactions on Pt (111)[J]. Journal of Vacuum Science and Technology A. 1987, 5 (4): 944-947.[11] Protopopoff E, Marcus P. Potential-pH diagrams for sulfur and hydroxyl adsorbed on copper surfaces in water containing sulfides, sulfites or thiosulfates[J]. Corrosion Science, 2003, 45(6): 1191-1201.[12] Sung Y E, Chrzanowski W, Wieckowski A, et al. Coverage evolution of sulfur on Pt(111) electrodes: From compressed overlayers to well-defined islands[J]. Electrochimica Acta, 1998, 44(6/7): 1019-1030.[13] Sung Y E, Chrzanowski W, Zolfaghari, A, et al. Structure of chemisorbed sulfur on a Pt(111) electrode[J]. Journal of the American Chemical Society, 1997, 119(1): 194-200.[14] Thomas V D, Schwank J W, Gland J L. Carbon monoxide desorption from platinum chemically modified by sulfur[J]. Surface Science, 2000, 464(2/3): 153-164.[15] Zolfaghari A, Jerkiewicz G, Chrzanowski W, et al. Energetics of the underpotential deposition of hydrogen on platinum electrodes ii.presence of coadsorbed sulfur[J]. Journal of the Electrochemical Society, 1999, 146(11): 4158-4165.[16] Rodriguez J A, Chaturvedi S, Jirsak T. The bonding of sulfur to Pd surfaces: Photoemission and molecular orbital studies[J]. Chemical Physics Letters, 1998, 296(3/4): 421-428.[17] Rodriguez J A, Dvorak J, Jirsak T, et al. Coverage effects and the nature of the metal-sulfur bond in S/Au(111): High resolution photoemission and density-functional studies[J]. Journal of the American Chemical Society, 2003, 125(1): 276-285.[18] Rodriguez J A, Kuhn M, Hrbeck J. The bonding of sulfur to a Pt(111) surface: Photoemission and molecular orbital studies[J]. Chemical Physics Letters, 1996, 251(1/2): 13-19.[19] Zaera F, Salmeron M. Coadsorption of sulfur and carbon monoxide on platinum single crystal surfaces studied by scanning tunneling microscopy[J]. Langmuir, 1998, 14(6): 1312-1319.[20] Binder H, Kohling A, Sandstede G. Acceleration by adsorbed sulphur and selenium of the electrochemical oxidation of formic acid on platinum catalyst[J]. Nature, 1967, 214: 268-269.[21] Binder H, Kohling A, Sandstede G. The anodic oxidation of carbon monoxide and formic acid on platinum covered with sulfur. In Fuel Cell Systems II, Baker B S, Ed[M]. American Chemical Society: Washington, D.C., 1969.[22] Contractor A Q, Lal H. Formic acid oxidation at platinized platinum electrodes part V. A further study of catalytic effect of pre-adsorbed sulfur[J]. Journal of Electroanalytical Chemistry, 1979, 103(1): 103-117.[23] Watanabe M, Motoo S. Electrocatalysis by Ad-atoms part XVI enhancement of carbon monoxide oxidation on platinum electrode in acid solution by the VIth Ad-atoms[J]. Journal of Electroanalytical Chemistry, 1985, 194(2): 275-278.[24] Watanabe M, Motoo S. Electrocatalysis by Ad-atoms part XV. Enhancement of co oxidation on platinum by the electronegativity of Ad-atoms[J]. Journal of Electroanalytical Chemistry, 1985, 194: 261-274.[25] Loucka T. Adsorption and oxidation of organic compounds on a platinum electrode partly covered by adsorbed sulphur[J]. Journal of Electroanalytical Chemistry, 1972, 36: 355.[26] Park I S, Chen D J, Atienza D O. Enhanced CO monolayer electro-oxidation reaction on sulfide-adsorbed Pt nanoparticles: A combined electrochemical and in situ ATR-SEIRAS spectroscopic study[J]. Catalysis today, 2012, http://dx.doi.org/10.1016/j.cattod.2012.05.045.[27] Weaver M J, Zou S. Z, Chan H Y H. The new interfacial ubiquity of surface-enhanced raman spectroscopy[J]. Analytical Chemistry, 2000, 72(1): 38A-47A.[28] Zou S Z, Weaver M J. Surface-enhanced Raman scattering an uniform transition metal films: Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces?[J]. Analytical Chemistry, 1998, 70(11): 2387-2395.[29] Zou S Z, Williams C T, Chen E K Y, et al. Probing molecular vibrations at catalytically significant interfaces: A new ubiquity of surface-enhanced Raman scattering[J]. Journal of the American Chemical Society, 1998, 120(15): 3811-3812.[30] Zou S Z, Williams C T, Chen E K Y, et al. Surface-enhanced Raman scattering as a ubiquitous vibrational probe of transition-metal interfaces: Benzene and related chemisorbates on palladium and rhodium in aqueous solution[J]. Journal of Physical Chemistry B, 1998, 102(45): 9039-9049.[31] Gao P, Gosztola D, Leung L W H, et al. Surface-enhanced Raman-scattering at gold electrodes - dependence on electrochemical pretreatment conditions and comparisons with silver[J]. Journal of Electroanalytical Chemistry, 1987, 233(1/2): 211-222.[32] Mrozek M F, Xie Y, Weaver M J. Surface-enhanced Raman scattering on uniform platinum-group overlayers: Preparation by redox replacement of underpotential-deposited metals on gold[J]. Analytical Chemistry, 2001, 73(24): 5953-5960.[33] Park I S, Xu B, Atienza D O, et al. Chemical state of adsorbed sulfur on Pt nanoparticles[J]. ChemPhysChem, 2011, 12(4): 747-752.[34] Batina N, McCargar J W, Salaita G N, et al. Structure and composition of Pt(111) and Pt(100) surfaces as a function of electrode potential in aqueous sulfide solutions[J]. Langmuir, 1989, 5(1): 123-128.[35] Foresti M L, Innocenti M, Forni F, et al. Electrosorption valency and partial charge transfer in halide and sulfide adsorption on Ag(111)[J]. Langmuir, 2001, 14(24): 7008-7016.[36] Yang, H. Z.; Zou, S. Z., in preparation.[37] Markovic N M, Lucas C A, Rodes A, et al. Surface electrochemistry of CO on Pt(111): Anion effects[J]. Surface Science, 2002, 499(2/3): L149-L158.[38] Lebedeva N P, Koper M T M, Feliu J M. Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111)[J]. Journal of Electroanalytical Chemistry, 2002, 524: 242-521.[39] Lebedeva N P, Koper M T M, Feliu J M, et al. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes[J]. Journal of Physical Chemistry B, 2002, 106(50): 12938-12947.[40] Lebedeva N P, Koper M T M, Herrero E, et al. Cooxidation on stepped Pt[n(111) x (111)] electrodes[J]. Journal of Electroanalytical Chemistry, 2000, 487(1): 37-44.[41] Zou S Z, Weaver M J. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatic field effects[J]. Journal of Physical Chemistry.1996, 100(10): 4237-4242.[42] Xu B, Park I S, Li Y, et al. An in situ SERS investigation of the chemical states of sulfur species adsorbed onto Pt from different sulfur sources[J]. Journal of Electroanalytical Chemistry, 2011, 662(1): 52-56.[43] Mrozek M F, Weaver M J. Periodic trends in monoatomic chemisorbate bonding on platinum-group and other noble-metal electrodes as probed by surface-enhanced raman spectroscopy[J]. Journal of the American Chemical Society, 2000, 122(1): 150-155.[44] Gao X P, Zhang Y, Weaver M J. Adsorption and electrooxidative pathways for sulfide on gold as probed by real-time surface-enhanced raman-spectroscopy[J]. Langmuir, 1992, 8(2): 668-672.[45] Koper M T M, van Santen R A, Wasileski S A, et al. Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces[J]. Journal of Chemical Physics, 2000, 113(10), 4392-4407.[46] Tang C, Zou S, Severson M W, et al. Coverage-dependent infrared spectroscopy of carbon monoxide on Iridium(111) in aqueous solution: A benchmark comparison between chemisorption in ordered electrochemical and ultrahigh-vacuum environments[J]. Journal of Physical Chemistry B, 1998, 102 (44): 8796-8806.[47] Tang C, Zou S Z, Severson M W, et al. Infrared spectroscopy of mixed nitric-oxide-carbon-monoxide adlayers on ordered iridium(111) in aqueous solution: A model study of coadsorbate vibrational interactions[J]. Journal of Physical Chemistry B.1998, 102 (43): 8546-8556.[48] Korzeniewski C, Kardash D. Use of a dynamic monte carlo simulation in the study of nucleation-and-growth models for CO electrochemical oxidation[J]. Journal of Physical Chemistry B, 2001, 105(37): 8663-8671.[49] Love B, Lipkowski J. ACS Symp. Ser.[M]. 1988; Vol. 378, p 484-496.[50] Koper M T M. Combining experiment and theory for understanding electrocatalysis[J]. Journal of Electroanalytical Chemistry, 2005, 574(2), 375-386.[51] Bonzel H P, Ku R. Adsorbate interactions on a Pt(110) surface. I. Sulfur and carbon monoxide[J]. Journal of Chemical Physics, 1973, 58(10): 4617-4623.[52] Markovic N M, Grgur B N, Lucas C A, et al. Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions[J]. Journal of Physical Chemistry B, 1999, 103(3): 487-495.[53] Batteas J D, Dunphy J C, Somorjai G A, et al. Coadsorbate induced reconstruction of a stepped Pt(111) surface by sulfur and CO: A novel surface restructuring mechanism observed by scanning tunneling microscopy[J]. Physical Review Letters, 1996, 77(3), 534-537.[54] Dunphy J C, McIntyre B J, Gomez J, et al. Coadsorbate induced compression of sulfur overlayers on Re(0001) and Pt(111) by CO[J]. Journal of Chemical Physics.1994, 100(8): 6092-6097.[55] McIntyre B J, Salmeron M, Somorjai G A. An in situ STM determination of a kinetic pathway for the coadsorbate-induced compression of sulfur by CO on Pt(111)[J]. Surface Science, 1995, 323: 189-197.[56] Xiao X D, Xie Y, Jakobsen C, et al. Impurity effect on surface diffusion: CO/S/Ni (110)[J]. Physical Review Letters, 1995, 74(19): 3860-3863.[57] Saravanana C, Markovic N M, Head-Gordon M, et al. Stripping and bulk CO electro-oxidation at the Pt-electrode interface: Dynamic Monte Carlo simulations[J]. Journal of Chemical Physics, 2001, 114(14): 6404-6412.[58] Xia X H, Vielstich W. Enhanced oxidation of carbon monoxide on platinum in HClO4 Via Interaction with Acetonitrile[J]. Electrochimica Acta, 1994, 39(1): 13-21. |