电化学(中英文) ›› 2012, Vol. 18 ›› Issue (6): 479-495. doi: 10.61558/2993-074X.2617
• 能源电化学 • 下一篇
蒋三平
收稿日期:
2012-05-31
修回日期:
2012-07-26
出版日期:
2012-12-28
发布日期:
2012-12-28
通讯作者:
蒋三平
E-mail:s.jiang@curtin.edu.au
基金资助:
The financial support by Australia Research Council under contract LP110200281 and National Natural Science Foundation of China (U1134001) is greatly acknowledged
Sanping Jiang
Received:
2012-05-31
Revised:
2012-07-26
Published:
2012-12-28
Online:
2012-12-28
Contact:
Sanping Jiang
E-mail:s.jiang@curtin.edu.au
Supported by:
The financial support by Australia Research Council under contract LP110200281 and National Natural Science Foundation of China (U1134001) is greatly acknowledged
摘要: 燃料电池是一种将燃料的化学能直接转化为电能的电化学发电装置. 在各种类型的燃料电池中,固体氧化物燃料电池(SOFC)在600~800 oC的中温区运行,因此与质子交换膜燃料电池等低温燃料电池相比,它的燃料选择范围更广,具有更广泛的应用前景. 然而,SOFC的商业应用面临着两大挑战:成本和稳定性. 这两种挑战与阳极、阴极、电解质、连接体和密封材料等组件的加工、制备、性能、化学和微结构稳定性密切相关. 电池堆的导管连接材料也需要经过仔细地筛选,以最大限度地降低有毒害的挥发性成分,从而确保电池结构的稳定和完整. 本文旨在简要评述SOFC的材料和组分的研究现状,并提出展望. 本文也对新一代SOFC技术面临的机遇和挑战进行了探讨.
中图分类号:
蒋三平. 中温固体氧化物燃料电池优势和挑战的简要评述[J]. 电化学(中英文), 2012, 18(6): 479-495.
Sanping Jiang. Advances and Challenges of Intermediate Temperature Solid Oxide Fuel Cells: A Concise Review[J]. Journal of Electrochemistry, 2012, 18(6): 479-495.
[1] Jacobson A J. Materials for Solid Oxide Fuel Cells[J]. Chemistry of Materials, 2010, 22: 660-674.[2] Brett D J L, Atkinson A, Brandon N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37: 1568-1578.[3] Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39: 4405-4439.[4] Muller A C, Herbstritt D, Ivers-Tiffee E. Development of a multilayer anode for solid oxide fuel cells[J]. Solid State Ionics, 2002, 152-153: 537-542.[5] Dees D W, Claar T D, Easler T E, et al. Conductivity of porous Ni/Zro2-Y2o3 cermets[J]. Journal of the Electrochemical Society, 1987, 134: 2141-2146.[6] Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400: 649-651.[7] Tsoga A, Naoumidis A, Nikolopoulos P. Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ[J]. Acta Materialia, 1996, 44: 3679-3692.[8] Jiang S P. Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cells[J]. Journal of Materials Science, 2003, 38: 3775-3782.[9] Wilson J R, Kobsiriphat W, Mendoza R, et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode[J]. Nature Materials, 2006, 5: 541-544.[10] Chen H Y, Yu H C, Cronin J S, et al. Simulation of coarsening in three-phase solid oxide fuel cell anodes[J]. Journal of Power Sources, 2011, 196: 1333-1337.[11] Zha S W, Cheng Z, Liu M L. Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2007, 154: B201-B206.[12] Eguchi K, Kojo H, Takeguchi T, et al. Fuel flexibility in power generation by solid oxide fuel cells[J]. Solid State Ionics, 2002, 152: 411-416.[13] Kim H, da Rosa C, Boaro M, et al. Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet[J]. Journal of the American Ceramic Society, 2002, 85: 1473-1476.[14] Kim H, Lu C, Worrell W L, et al. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells[J]. Journal of the Electrochemical Society, 2002, 149: A247-A250.[15] Zha S, Tsang P, Cheng Z, et al. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions[J]. Journal of Solid State Chemistry, 2005, 178: 1844-1850.[16] Mukundan R, Brosha E L, Garzon F H. Sulfur Tolerant Anodes for SOFCs[J]. Electrochemical and Solid-State Letters, 2004, 7: A5-A7. [17] Aguilar L, Zha S, Li S, et al. Sulfur-tolerant materials for the hydrogen sulfide SOFC[J]. Electrochemical and Solid-State Letters, 2004, 7: A324-A326.[18] Marina O A, Pederson L R. Novel ceramic anodes for SOFCs tolerant to oxygen, carbon and sulfur, in The Fifth European Solid Oxide Fuel Cell Forum[M]//J Huijismans. European Fuel Cell Forum. Switzerland: Lucerne, 2002: 481-489.[19] Yang C H, Yang Z B, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24: 1439-1443.[20] Jiang S P, Chen X J, Chan S H, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177: 149-157.[21] Ong K P, Wu P, Liu L, et al. Optimization of electrical conductivity of LaCrO3 through doping: A combined study of molecular modeling and experiment[J]. Applied Physics Letters, 2007, 90.[22] Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of the Electrochemical Society, 2004, 151: A252-A259.[23] Jiang S P, Love J G, Apateanu L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells[J]. Solid State Ionics, 2003, 160: 15-26.[24] Trembly J P, Marquez A I, Ohrn TR, et al. Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests[J]. Journal of Power Sources, 2006, 158: 263-273.[25] Zhang L, Jiang S P, He H Q, et al. A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35: 12359-12368.[26] Kerman K, Lai B K, Ramanathan S. Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations[J]. Journal of Power Sources, 2011, 196: 2608-2614.[27] Ye Y M, He T M, Li Y, et al. Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs[J]. Journal of the Electrochemical Society, 2008, 155: B811-B818.[28] Klages M, Kruger P, Haussmann J, et al. Investigation of the influence of GDL properties on the water balance by means of neutron radiography[J]. Materials Testing, 2010, 52: 718-724.[29] Jin Y, Yasutake H, Yamahara K, et al. Suppressed carbon deposition behavior in nickel/yittria-stablized zirconia anode with SrZr0.95Y0.05O3-α in Dry Methane Fuel[J]. Journal of the Electrochemical Society, 2010, 157: B130-B134.[30] Wang W, Jiang S P, Tok A I Y, et al. GDC-impregnated Ni anodes for direct utilization of methane in solid oxide fuel cells[J]. Journal of Power Sources, 2006, 159: 68-72.[31] Yang L, Choi Y, Qin W T, et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nature Communications, 2011, 2.[32] Cheng Z, Wang J H, Choi Y M, et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives[J]. Energy & Environmental Science, 2011, 4: 4380-4409.[33] Jiang S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review[J]. Journal of Materials Science, 2008, 43: 6799-6833.[34] Carter S, Selcuk A, Chater R J, et al. Oxygen-transport in selected nonstoichiometric perovskite-structure oxides[J]. Solid State Ionics, 1992, 53-6: 597-605.[35] Zhen Y D, Jiang S P. Transition behavior for O2 reduction reaction on (La,Sr)MnO3/YSZ composite cathodes of solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2006, 153: A2245-A2254.[36] Jiang S P, Wang W. Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2005, 152: A1398-A1408. [37] Esquirol A, Brandon N P, Kilner J A, et al. Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs[J]. Journal of the Electrochemical Society, 2004, 151: A1847-A1855.[38] Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics, 2002, 146: 1-22.[39] Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173.[40] Wei B, Lu Z, Li S Y, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells[J]. Electrochemical and Solid State Letters, 2005, 8: A428-A431.[41] Yi J X, Schroeder M, Weirich T, et al. Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: Degradation mechanism and materials design[J]. Chemistry of Materials, 2010, 22: 6246-6253.[42] Zhou W, Liang F L, Shao Z P, et al. Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction[J]. Scientific Reports, 2012, 2.[43] Tu H Y, Stimming U. Advances, aging mechanisms and lifetime in solid-oxide fuel cells[J]. Journal of Power Sources, 2004, 127: 284-293.[44] Fergus J W. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32: 3664-3671.[45] Schuler J A, Gehrig C, Wuillemin Z, et al. Air side contamination in solid oxide fuel cell stack testing[J]. Journal of Power Sources, 2011, 196: 7225-7231.[46] Taniguchi S, Kadowaki M, Yasuo T, et al. Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer[J]. Denki Kagaku, 1996, 64: 568-574.[47] Fu C J, Sun K N, Zhang N Q, et al. Mechanism of chromium poisoning of LSM cathode in solid oxide fuel cell[J]. Chemical Journal of Chinese Universities-Chinese, 2007, 28: 1762-1764.[48] Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153: A765-A773.[49] Paulson S C, Birss V I. Chromium poisoning of LSM-YSZ SOFC cathodes - I. Detailed study of the distribution of chromium species at a porous, single-phase cathode[J]. Journal of the Electrochemical Society, 2004, 151: A1961-A1968.[50] Jiang S P, Zhang J P, Apateanu L, et al. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells I. Mechanism and kinetics[J]. Journal of the Electrochemical Society, 2000, 147: 4013-4022.[51] Badwal S P S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells[J]. Solid State Ionics, 1997, 99: 297-310.[52] Jiang SP, Christiansen L, Hughan B, et al. Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes[J]. Journal of Materials Science Letters, 2001, 20: 695-697.[53] Xiong Y P, Yamaji K, Horita T, et al. Sulfur Poisoning of SOFC Cathodes[J]. Journal of the Electrochemical Society, 2009, 156: B588-B592.[54] Horita T, Kishimoto H, Yamaji K, et al. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells[J]. Journal of Power Sources, 2009, 193: 194-198.[55] Zhou X D, Templeton J W, Zhu Z, et al. Electrochemical performance and stability of the cathode for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157: B1019-B1023.[56] Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges[J]. International Journal of Hydrogen Energy, 2012, 37: 449-470.[57] Gorte R J, Vohs J M. Nanostructured anodes for solid oxide fuel cells[J]. Current Opinion in Colloid & Interface Science, 2009, 14: 236-244.[58] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique[J]. Electrochimica Acta, 2010, 55: 3595-3605.[59] Sholklapper T Z, Jacobson C P, Visco S J, et al. Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes[J]. Fuel Cells, 2008, 8: 303-312.[60] Liang F L, Chen J, Cheng J L, et al. Novel nano-structured Pd plus yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2008, 10: 42-46.[61] Sholklapper T Z, Kurokawa H, Jacobson C P, et al. Nanostructured solid oxide fuel cell electrodes[J]. Nano Letters, 2007, 7: 2136-2141.[62] Jung SW, Vohs J M, Gorte R J. Preparation of SOFC anodes by electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154: B1270-B1275.[63] Ai N, Jiang S P, Chen K F, et al. Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36: 7661-7669.[64] Jiang S P, Wang W. Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells[J]. Solid State Ionics, 2005, 176: 1351-357.[65] Murray E P, Barnett S A. (La,Sr) MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells[J]. Solid State Ionics, 2001, 143: 265-273.[66] Jiang S P, Zhang J P, Foger K. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells - II. Effect on O2 reduction reaction[J]. Journal of the Electrochemical Society, 2000, 147: 3195-3205.[67] Murray E P, Tsai T, Barnett S A. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study[J]. Solid State Ionics, 1998, 110: 235-243.[68] Ai N, Jiang S P, Lu Z, et al. Nanostructured (Ba,Sr)(Co,Fe)O3-δ Impregnated (La,Sr)MnO3 Cathode for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Journal of the Electrochemical Society, 2010, 157: B1033-B1039.[69] Shah M, Voorhees P W, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening[J]. Solid State Ionics, 2011, 187: 64-67.[70] Liang F L, Chen J, Jiang S P, et al. Mn-Stabilised Microstructure and Performance of Pd-impregnated YSZ Cathode for Intermediate Temperature Solid Oxide Fuel Cells[J]. Fuel Cells, 2009, 9: 636-642.[71] Babaei A, Zhang L, Liu E J, et al. Journal of Alloys and Compounds, 2011, 509: 4781-4787.[72] Badwal S P S. Zirconia-based solid electrolytes-microstructure, stability and ionic-conductivity [J]. Solid State Ionics, 1992, 52: 23-32.[73] Ishihara T. Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells[J]. Bulletin of the Chemical Society of Japan, 2006, 79: 1155-1166.[74] Hull S. Superionics: Crystal structures and conduction processes[J]. Reports on Progress in Physics, 2004, 67: 1233-1314.[75] Nomura K, Mizutani Y, Kawai M, et al. Aging and Raman scattering study of scandia and yttria doped zirconia[J]. Solid State Ionics, 2000, 132: 235-239.[76] Badwal S P S, Ciacchi F T, Rajendran S, et al. An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3)[J]. Solid State Ionics, 1998, 109: 167-186.[77] Badwal S P S, Rajendran S. Effect of microstructures and nanostructures on the properties of ionic conductors[J]. Solid State Ionics, 1994, 70: 83-95.[78] Liu Y, Lao L E. Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia[J]. Solid State Ionics, 2006, 177: 159-163.[79] Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129: 63-94.[80] Zhan Z L, Wen T L, Tu H Y, et al. AC impedance investigation of samarium-doped ceria[J]. Journal of the Electrochemical Society, 2001, 148: A427-A432.[81] Jung G B, Huang T J, Chang C L. Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte[J]. Journal of Solid State Electrochemistry, 2002, 6: 225-230.[82] Zha S W, Xia C R, Meng G Y. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115: 44-48.[83] Vanherle J, Horita T, Kawada T, et al. Sintering behaviour and ionic conductivity of yttria-doped ceria[J]. Journal of the European Ceramic Society, 1996, 16: 961-973.[84] Zhang X, Robertson M, Deces-Petit C, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164: 668-677.[85] Ishihara T, Tabuchi J, Ishikawa S, et al. Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs[J]. Solid State Ionics, 2006, 177: 1949-1953.[86] Yan J W, Matsumoto H, Enoki M, et al. High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δ composite film[J]. Electrochemical and Solid State Letters, 2005, 8: A389-A391.[87] Kosacki I, Rouleau C M, Becher P F, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films[J]. Solid State Ionics, 2005, 176: 1319-1326.[88] Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2 : Y2O3/SrTiO3 heterostructures[J]. Science, 2008, 321: 676-680.[89] Vincent A, Savignat S B, Gervais F. Elaboration and ionic conduction of apatite-type lanthanum silicates doped with Ba, La10-xBax(SiO4) 6O3-x/2 with x=0.25-2[J]. Journal of the European Ceramic Society, 2007, 27: 1187-1192.[90] Slater P R, Sansom J E H, Tolchard J R. Development of apatite-type oxide ion conductors[J]. Chemical Record, 2004, 4: 373-384.[91] Jiang S P, Zhang L, He H Q, et al. Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189: 972-981.[92] Komori S, Kimura M, Watanabe K, et al. Compact Fuel Processor by Employing Monolithic Catalyst for 1 kW Class Residential Polymer Electrolyte Fuel Cells[J]. Journal of the Japan Petroleum Institute, 2011, 54: 52-5.[93] Jung D W, Duncan K L, Wachsman E D. Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y[J]. Acta Materialia, 2010, 58: 355-363.[94] Wachsman E D, Jayaweera P, Jiang N, et al. Stable high conductivity ceria/bismuth oxide bilayered electrolytes[J]. Journal of the Electrochemical Society, 1997, 144: 233-236.[95] Ahn J S, Pergolesi D, Camaratta M A, et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2009, 11: 1504-1507.[96] Mori M, Yamamoto T, Itoh H, et al. Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells[J]. Journal of Materials Science, 1997, 32: 2423-2431.[97] Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics, 2004, 171: 1-15.[98] Sakai N, Yokokawa H, Horita T, et al. Lanthanum chromite-based interconnects as key materials for SOFC stack development[J]. International Journal of Applied Ceramic Technology, 2004, 1: 23-30.[99] Liu Z G, Zheng Z R, Huang X Q, et al. The Pr4+ ions in Mg doped PrGaO3 perovskites[J]. Journal of Alloys and Compounds, 2004, 363: 60-62.[100] Zhou X L, Deng F J, Zhu M X, et al. High performance composite interconnect La0.7Ca0.3CrO3/20 mol% ReO1.5 doped CeO2 (Re = Sm, Gd, Y) for solid oxide fuel cells[J]. Journal of Power Sources, 2007, 164: 293-299.[101] Shen Y, Liu M N, He T M, et al. A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3-δ[J]. Journal of Power Sources, 195: 977-983.[102] Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 348: 227-243.[103] Fergus J W. Metallic interconnects for solid oxide fuel cells[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005, 397: 271-283.[104] Holt A, Kofstad P. Electrical-conductivity and derect structure of Cr2O3. 2. Reduced temperatures (less than similar to 1000 oC)[J]. Solid State Ionics, 1994, 69: 137-143.[105] Quadakkers W J, Hansel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments[J]. Materials and Corrosion-Werkstoffe Und Korrosion, 1998, 49: 252-257.[106] Blum L, Buchkremer H P, Gross S, et al. Solid oxide fuel cell development at Forschungszentrum Juelich[J]. Fuel Cells, 2007, 7: 204-210.[107] Yang Z G, Hardy J S, Walker M S, et al. Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications[J]. Journal of the Electrochemical Society, 2004, 151: A1825-A1831.[108] Yao K S, Chen Y C, Chao C H, et al. Electrical enhancement of DMFC by Pt-M/C catalyst-assisted PVD[J]. Thin Solid Films, 2010, 518: 7225-7228.[109] Hua B, Pu J, Zhang J F, et al. Ni-Mo-Cr alloy for interconnect applications in intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2009, 156: B93-B98.[110] Chen X B, Hua B, Pu J, et al. Interaction between (La, Sr)MnO3 cathode and Ni-Mo-Cr metallic interconnect with suppressed chromium vaporization for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34: 5737-5748.[111] Fergus J W. Sealants for solid oxide fuel cells[J]. Journal of Power Sources, 2005, 147: 46-57.[112] Eichler K, Solow G, Otschik P, et al. BAS (BaO center dot Al2O3 center dot SiO2)-glasses for high temperature applications[J]. Journal of the European Ceramic Society, 1999, 19: 1101-1104.[113] Yang Z G, Stevenson J W, Meinhardt K D. Chemical interactions of barium-calcium-aluminosilicate-based sealing glasses with oxidation resistant alloys[J]. Solid State Ionics, 2003, 160: 213-225.[114] Chen K F, Ai N, Lievens C, et al. Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells[J]. Electrochemistry Communications, 2012: in press.[115] Duquette J, Petric A. Silver wire seal design for planar solid oxide fuel cell stack[J]. Journal of Power Sources, 2004, 137: 71-75.[116] Bram M, Reckers S, Drinovac P, et al. Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks[J]. Journal of Power Sources, 2004, 138: 111-119.[117] Sang S B, Pu J, Jiang S P, et al. Prediction of H2 leak rate in mica-based seals of planar solid oxide fuel cells[J]. Journal of Power Sources, 2008, 182: 141-144.[118] Chou Y S, Stevenson J W, Chick L A. Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells[J]. Journal of Power Sources, 2002, 112: 130-136.[119] Chou Y S, Stevenson J W. Thermal cycling and degradation mechanisms of compressive mica-based seals for solid oxide fuel cells[J]. Journal of Power Sources, 2002, 112: 376-383.[120] Khan T I, Al-Badri A. Reactive brazing of ceria to an ODS ferritic stainless steel[J]. Journal of Materials Science, 2003, 38: 2483-8.[121] Weil K S. The state-of-the-art in sealing technology for solid oxide fuel cells[J]. Jom, 2006, 58: 37-44.[122] Foger K, Love J G. Fifteen years of SOFC development in Australia[J]. Solid State Ionics, 2004, 174: 119-126.[123] Jiang S P. Thin coating technologies and applications in high-temperature solid oxide fuel cells[M]// Zhang S. Handbook of Nanostructured Film Devices and Coatings. CRC Press, 2010: 155-187.[124] Minh N Q. Solid oxide fuel cell technology-features and applications[J]. Solid State Ionics, 2004, 174: 271-277.[125] Srivastava P K, Quach T, Duan Y Y, et al. Electrode supported solid oxide fuel cells: Electrolyte films prepared by DC magnetron sputtering[J]. Solid State Ionics, 1997, 99: 311-319.[126] Kim J W, Virkar A V, Fung K Z, et al. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells[J]. Journal of the Electrochemical Society, 1999, 146: 69-78.[127] Sarantaridis D, Atkinson A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review[J]. Fuel Cells, 2007, 7: 246-58.[128] Lang M, Henne R, Schaper S, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2001, 10: 618-625.[129] Brandon N P, Blake A, Corcoran D, et al. Development of metal supported solid oxide fuel cells for operation at 500-600 degrees C[J]. Journal of Fuel Cell Science and Technology, 2004, 1: 61-65.[130] Bryant B, Renner C, Tokunaga Y, et al. Imaging oxygen defects and their motion at a manganite surface[J]. Nature Communications, 2011, 2.[131] Cheng Z, Liu M L. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman micro spectroscopy[J]. Solid State Ionics, 2007, 178: 925-935. |
[1] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[2] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[3] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[4] | 范佳琪, 宋焕巧, 安佳莹, 阿依达娜·阿曼太, 陈默. 碳限域Li3VO4纳米材料的制备及其储锂性能[J]. 电化学(中英文), 2023, 29(11): 211203-. |
[5] | 殷秀平, 赵玉峰, 张久俊. 钠离子电池硬碳基负极材料的研究进展[J]. 电化学(中英文), 2023, 29(10): 2204301-. |
[6] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[7] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[8] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[9] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[10] | 胡炳文, 李超, 耿福山, 沈明. 金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)[J]. 电化学(中英文), 2022, 28(2): 2108421-. |
[11] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[12] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[13] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[14] | 李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613. |
[15] | 滕久康, 王庆杰, 张亮, 张红梅, 陈晓涛, 张鹏, 赵金保. 热处理时间对锂电池正极材料Cr8O21的影响[J]. 电化学(中英文), 2021, 27(6): 689-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||