[1] Brandon N P, Skinner S, Steele B C H. Recent advances in materials for fuel cells, Annual Review of Materials Research, 2003, 33: 183-213. [2] Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chemical Reviews, 2004, 104(10): 4791-4843. [3] Casado-Rivera E, Volpe D J, Alden L, Lind C, Downie C, Vazquez-Alvarez T, Angelo A C D, DiSalvo F J, Abruna H D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, Journal of The American Chemical Society, 2004, 126(12): 4043-4049.[4] Sasaki K, Wang J X, Balasubramanian M, McBreen J, Uribe F, Adzic R R. Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability, Electrochimica Acta, 2004, 49(22-23): 3873-3877.[5] Mallouk T E, Smotkin E S. in Handbook of Fuel Cells – Fundamentals, Technology and Application, ed. W. Vielstich, A. Lamm, and H. A. Gasteiger, John Wiley & Sons. 2003. [6] Liu R, Smotkin E S. Array membrane electrode assemblies for high throughput screening of direct methanol fuel cell anode catalysts, Journal of Electroanalytical Chemistry, 2002, 535(1-2): 49-55.[7] Strasser P, Fan Q, Devenney M, Weinberg W H, Liu P, Norskov J K. High throughput experimental and theoretical predictive screening of materials - A comparative study of search strategies for new fuel cell anode catalysts, Journal of Physical Chemistry B, 2003, 107(40): 11013-11021.[8] He T, Kreidler E, Xiong L, Luo J., Zhong C J. Alloy Electrocatalysts: Combinatorial Discovery and Nanosynthesis, Journal of The Electrochemical Society, 2006, 153(9): A1637-A1643. [9] Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nature Materials, 2007, 6(3): 241-247.[10] Paulus U A, Wokaun A, Scherer G G, Schmidt T J, Stamenkovic V, Radmilovic V, Markovic N M, Ross P N. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts, Journal of Physical Chemistry B, 2002, 106(16): 4181-4191. [11] Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Norskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry, 2009, 1(7): 552-556.[12] Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, 315(5811): 493-497.[13] Stamenkovic V, Schmidt T J, Ross P N, Markovic N M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces, Journal of Physical Chemistry B, 2002, 106(46): 11970-11979.[14] Mukerjee S, Srinivasan S, Soriaga M P, McBreen J. Role of structural and ekectronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction - an in-situ XANES and EXAFS investigation, Journal of The Electrochemical Society, 1995, 142(5): 1409-1422. [15] Wei Z D, Feng Y C, Li L, Liao M J, Fu Y, Sun C X, Shao Z G, Shen P K. Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells, Journal of Power Sources, 2008, 180(1): 84-91.[16] Mani P, Srivastava R, Strasser P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells, Journal of Power Sources, 2011, 196(2): 666-673.[17] Seo A, Lee J, Han K, Kim H. Performance and stability of Pt-based ternary alloy catalysts for PEMFC, Electrochimica Acta, 2006, 52(4): 1603-1611.[18] Yu P, Pemberton M, Plasse P. PtCo/C cathode catalyst for improved durability in PEMFCs, Journal of Power Sources, 2005, 144(1): 11-20. [19] Rao C R K, Trivedi D C. Chemical and electrochemical depositions of platinum group metals and their applications, Coordination Chemistry Reviews, 2005, 249(5-6): 613-631. [20] Russell A E, Rose A. X-ray absorption Spectroscopy of low temperature fuel cell catalysts, Chemical Reviews, 2004, 104(10): 4613-4635. [21] Bond G C, Thompson D T. Catalysis by gold, Catalysis Reviews – Science and Engineering, 1999, 41(3-4): 319-388. [22] Campbell C T. The active site in nanopaticle gold catalysis, Science, 2004, 306(5694): 234-235. [23] Chen M S, Goodman D W. The structure of catalytically active gold on titania, Science, 2004, 306(5694): 252-255. [24] Davis R J. All that glitters is not Au-0, Science, 2003, 301(5635): 926-927. [25] Haruta M, Date M. Advances in the catalysis of Au nanoparticles, Applied Catalysis A - General, 2001, 222(1-2): 427-437. [26] Rolison D R. Catalytic nanoarchitectures - The importance of nothing and the unimportance of periodicity, Science, 2003, 299(5613): 1698-1701. [27] Luo J, Njoki P, Lin Y, Wang L, Mott D, Zhong C J. Activity-Composition Correlation of AuPt Alloy Nanoparticle Catalysts in Electrocatalytic Reduction of Oxygen, Electrochemistry Communications, 2006, 8: 581-587. [28] Luo J, Njoki P, Lin Y, Mott D, Wang L, Zhong C J. Characterization of Carbon-Supported AuPt Nanoparticles for Electrocatalytic Methanol Oxidation Reaction, Langmuir, 2006, 22: 2892-2898. [29] Luo J, Kariuki N, Han L, Wang L, Zhong C J, He T. Preparation and Characterization of Carbon-supported PtVFe Electrocatalysts, Electrochimica Acta, 2006, 51(23): 4821-4827. [30] Luo J, Wang L Y, Mott D, Njoki P N, Kariuki N, Zhong C J, He T. Ternary Alloy Nanoparticles with Controllable Sizes and Composition and Electrocatalytic Activity, Journal of Materials Chemistry, 2006, 16: 1665-1673.[31] Wang L, Luo J, Schadt M J, Zhong C J. Thin Film Assemblies of Molecularly-Linked Metal Nanoparticles and Multifunctional Properties, Langmuir, 2010, 26: 618-632. [32] Wanjala B N, Luo J, Loukrakpam R, Fang B, Mott D, Njoki P N, Engelhard M, Naslund H R, Wu J K, Wang L C, Malis O, Zhong C J. Nanoscale Alloying, Phase-Segregation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction, Chemistry of Materials, 2010, 22: 4282-4294.[33] Wanjala B N, Luo J, Fang B, Mott D, Zhong C J. Gold-Platinum Nanoparticles: Alloying or Phase Segregation, Journal of Materials Chemistry, 2011, 21: 4012- 4020.[34] Wanjala B N, Loukrakpam R, Luo J, Njoki P N, Mott D, Zhong C J, Shao M H, Protsailo L, Kawamura T. Thermal Treatment of PtNiCo Electroatalysts: Effects of Nanoscale Strain and Structure on Activity and Stability for Oxygen Reduction Reaction, Journal of Physical Chemistry C, 2010, 114: 17580-17590.[35] Loukrakpam R, Luo J, He T, Chen Y, Xu Z, Njoki P N, Wanjala B N, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong C J. Nanoengineered PtCo and PtNi Catalysts for Oxygen Reduction Reaction: An Assessment of the Structural and Electrocatalytic Properties, Journal of Physical Chemistry C, 2011, 115: 1682-1694.[36] Loukrakpam R, Chang P, Luo J, Fang B, Mott D, Bae I T, Naslund H R, Engelhard M H, Zhong C J. Chromium-Assisted Shape Control of Pt-based Nanoparticle Electrocatalysts, Chemical Communications, 2010, 46: 7184-7186.[37] Fang B, Luo J, Chen Y, Wanjala B N, Loukrakpam R, Hong J, Yin J, Hu X, Hu P, Zhong C J. Nanoengineered PtVFe/C Cathode Electrocatalysts in PEM Fuel Cells: Catalyst Activity and Stability, ChemCatChem, 2011, 3(3): 583-593.[38] Fang B, Wanjala B N, Hu X A, Last J, Loukrakpam R, Yin J, Luo J, Zhong C J. PEM Fuel Cells with Nanoengineered AuPt Catalysts at the Cathode, Journal of Power Sources, 2011, 196: 659-665.[39] Fang B, Luo J, Njoki P N, Loukrakpam R, Wanjala B, Hong J, Yin J, Hu X, Last J, Zhong C J. Nanoengineered PtVFe Catalysts in Proton Exchange Membrane Fuel Cells: Electrocatalytic Performance, Electrochimica Acta, 2010, 55: 8230-8236.[40] Fang B, Luo J, Njoki P N, Loukrakpam R, Mott D, Wanjala B, Hu X, Zhong C J. Nanostructured PtVFe Catalysts: Electrocatalytic Performance in Proton Exchange Membrane Fuel Cells, Electrochemistry Communications, 2009, 11: 1139-1141.[41] Luo J, Han L, Kariuki N N, Wang L Y, Mott D, Zhong C J, He T. Phase Properties of Carbon-Supported Gold-Platinum Nanoparticles with Different Bimetallic Compositions, Chemistry of Materials, 2005, 17: 5282-5290. [42] Klabunde K J. Nanoscale Materials in Chemistry, New York: John Wiley & Sons, Inc. 2001. [43] Feldheim D L, Foss Jr C A. Metal Nanoparticles: Synthesis, Characterization, and Applications, New York: Marcel Dekker, Inc. 2002. [44] Raja R, Khimyak T, Thomas J M, Hermans S, Johnson B F G. Single-step, highly active, and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds, Angewandte Chemie International Edition, 2001, 40(24): 4638. [45] Schmidt T J, Gasteiger H A, Behm R J. Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst, Electrochemistry Communications, 1999, 1(1): 1-4.[46] Waszczuk P, Lu G Q, Wieckowski A, Lu C, Rice C, Masel R I. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis, Electrochimica Acta, 2002, 47(22-23): 3637-3652. [47] Luo J, Fang B, Wanjala B N, Njoki P N, Loukrakpam R, Yin J, Mott D, Lim S, Zhong C J. Chapter 7 in Inorganic Nanoparticles: Synthesis, Applications, and Perspectives, Claudia Altavilla Ed., CRC Press, Taylor & Francis, 2010.[48] Suarez-Alcantara K, Rodr?guez-Castellanos A, Dante R, Solorza-Feria O. RuxCrySez electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell, Journal of Power Sources, 2006, 157(1): 114-120. [49] Guha A, Zawodzinski Jr T A, Schiraldi D A. Evaluation of electrochemical performance for surface-modified carbons as catalyst support in polymer electrolyte membrane (PEM) fuel cells, Journal of Power Sources, 2007, 172(2): 530. [50] Zhang J, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters, Science, 2007, 315(5809): 220-222. [51] Chen S, Gasteiger H A, Hayakawa K, Tada T, Shao-Horn Y. Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes, Journal of The Electrochemical Society, 2010, 157(1): A82-A97. [52] Schulenburg H, Muller E, Khelashvili G, Roser T, Bonnemann H, Wokaun A, Scherer G G, Heat-Treated PtCo3 Nanoparticles as Oxygen Reduction Catalysts, Journal of Physical Chemistry C, 2009, 113(10): 4069–4077. [53] Liu Z, Yu C, Rusakova I A., Huang D, Strasser P. Synthesis of Pt(3)Co Alloy Nanocatalyst via Reverse Micelle for Oxygen Reduction Reaction in PEMFCs, Topics in Catalysis, 2008, 49(3-4): 241–250. [54] Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang K-C, Paulikas A P, Tripkovic D, Pearson J, More K L, Markovic N M, Stamenkovic V R, Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces, Journal of The American Chemical Society, 2011, 133(36): 14396–14403. [55] Wang C, van der Vliet D, Chang K-C, You H, Strmcnik D, Schlueter J A, Markovic N M, Stamenkovic V R. Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity, Journal of Physical Chemistry C, 2009, 113(45): 19365–19368. [56] van der Vliet D, Strmcnik D S, Wang C, Stamenkovic V R, Markovic N M, Koper M T M. On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction, Journal of Electroanalytical Chemistry, 2010, 647(1): 29-34. [57] Zhong C J, Luo J, Fang B, Wanjala B, Njoki P, Loukrakpam R, Yin J, Nanostructured Catalysts in Fuel Cells, Nanotechnology, 2010, 21: 062001. [58] Wanjala B N, Fang B, Loukrakpam R, Chen Y, Engelhard M, Luo J, Yin J, Yang L, Shan S, Zhong C J. Role of Metal Coordination Structures in Enhancement of Electrocatalytic Activity of Ternary Nanoalloys for Oxygen Reduction Reaction, ACS Catalysis, 2012, 2(5): 795–806. [59] Stamenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Norskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angewandte Chemie International Edition, 2006, 45(18): 2897-2901.[60] Xu Y, Ruban A V, Mavrikakis M. Adsorption and dissociation of O-2 on Pt-Co and Pt-Fe alloys, Journal of The American Chemical Society, 2004, 126(14): 4717-4725. [61] Xu Q, Kreidler E, He T. Performance and durability of PtCo alloy catalysts for oxygen electroreduction in acidic environments, Electrochimica Acta, 2010, 55(26): 7551–7557. [62] Wang C, Van der Vliet D, Chang K C, Markovic N M, Stamenkovic V R. Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen, Physical Chemistry Chemical Physics, 2010, 12(26): 6933-6939. [63] Koh S, Yu C, Mani P, Srivastava R, Strasser P. Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases, Journal of Power Sources, 2007, 172(1): 50-56.[64] Wanjala B, Fang B, Luo J, Chen Y, Yin J, Engelhard M, Loukrakpam R, Zhong C J. Correlation between Atomic Coordination Structure and Enhanced Electrocatalytic Activity for Trimetallic Alloy Catalysts, Journal of The American Chemical Society, 2011, 133: 12714-12727.[65] Loukrakpam R, Wanjala B N, Yin J, Fang B, Luo J, Chen Y, Petkov V, Zhong C J, Shao M, Protsailo L, Kawamura T. Structural and Electrocatalytic Properties of Nanoengineered PtIrCo Catalysts for Oxygen Reduction Reaction, ACS Catalysis, 2011, 1: 562–572. [66] Fang B, Wanjala B N, Yin J, Loukrakpam R, Luo J, Hu X, Last J, Zhong C J. Electrocatalytic Performance of Pt-based Trimetallic Nanoparticle Catalysts in Proton Exchange Membrane Fuel Cells, International Journal of Hydrogen Energy, 2012, 37: 4627-4632.[67] Chen G, You G, Zheng L, Li Y, Yang L, Cai F, Cai J, Zhong C J, Chen B H. Carbon-Supported PtAu Alloy Nanoparticle Catalysts for Enhanced Electrocatalytic Oxidation of Formic Acid, Journal of Power Sources, 2011, 196: 8323– 8330.[68] Chen G, Liao M, Li Y, Wang D, You G, Zhong C J, Chen B H. Pt-Decorated PdAu/C Nanocatalysts with Ultralow Pt Loading for Formic Acid Electrooxidation, International Journal of Hydrogen Energy, 2012, 37: 9959–9966. |