[1] Maruyama J, Abe I. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output[J]. Chemical Communications, 2007, 27: 2879-2881.[2] Wen Z H, Liu J, Li J H. Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[J]. Advanced Materials, 2008, 20(4): 743-747.[3] Wen Z H, Wang Q, Li J H. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts[J]. Advanced Functional Materials, 2008, 18(6): 959-964. [4] Gamburzev S, Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources, 2002, 107(1): 5-12.[5] Passalacqua E, Lufrano F, Squadrito G, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: Effects on structure and performance[J]. Electrochimica Acta, 2001, 46(6): 799-805.[6] Wei Z D, Ran H B, Liu X A, et al. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model[J]. Electrochimica Acta, 2006, 51(15): 3091-3096. [7] Ioselevich A, Komyshev A, Lehnert W. Phase segregation of LixMn2O4 (0.6[8] Kim H S, Subramanian N P, Popov B N. Preparation of PEM fuel cell electrodes using pulse electrodeposition[J]. Journal of Power Sources, 2004, 138(1/2): 14-24.[9] Ye F, Chen L, Li J J, et al. Shape-controlled fabrication of platinum electrocatalyst by pulse electrodeposition[J]. Electrochemistry Communications, 2008, 10(3): 476-479.[10] Wei Z D, Chen S G, Liu Y, et al. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC[J]. Journal of Physical Chemistry C, 2007, 111(42): 15456-15463.[11] Talor E J, Anderson E B, Vilambi N R K. Preparation of high-platinum-utilization gas diffusion electrodes for proton exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 1992, 139(5): L45-L46.[12] Xi J Y, Wang J S, Yu L H, et al. Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles[J]. Chemical Communications, 2007, 16: 1656-1658.[13] Tang J M, Jensen K, Waje M, et al. High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts[J]. Journal of Physical Chemistry C, 2007, 111(48): 17901-17904.[14] Xiao W, Jin X B, Deng Y, et al. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl[J]. Chemistry-A European Journal, 2007, 13(2): 604-612.[15] Chen S G, Wei Z D, Li H, et al. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chemical Communications, 2010, 46: 8782-8784.[16] Lee J S, Seo J S, Han K K, Kim H S. Preparation of low Pt loading electrodes on Nafion (Na+)-bonded carbon layer with galvanostatic pulses for PEMFC application[J]. Journal of Power Sources, 2006, 163(1): 349-356[17] 刘勇(Liu Y), 魏子栋(Wei Z D), 陈四国(Chen S G), et al. PEMFC electrodes platinized by modulated pulse current electrodeposition[J]. Acta Physico-Chimica Sinica(物理化学学报), 2007, 23(4): 521-525.[18] Thompson S D, Jordan L R, Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2001, 46(10/11): 1657-1663.[19] Shao Y Y, Yin G P, Wang J J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction[J]. Journal of Power Sources, 2006, 161(1): 47-53.[20] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735. |